| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
| Nagel R. — One-parameter semigroups of positive operators | 235, 239 |
| Nevanlinna R., Paatero V. — Introduction to Complex Analysis | 6 |
| Henrici P. — Applied and Computational Complex Analysis. I: Power Series, Integration, Conformal Mapping, Location of Zeros. | 5 |
| Rudin W. — Principles of Mathematical Analysis | 14 |
| Keisler H.J. — Elementary calculus | 12 |
| Lang S. — Algebra | 465 |
| Ash R.B. — A Course In Algebraic Number Theory | 9-1 |
| Dodge C.W. — Sets, logic & numbers | 165, 232 |
| Bulger B., Greenspan J., Wall D. — MySQL/PHP Database Applications | 702 |
| Apostol T.M. — Mathematical Analysis | 13, 18 |
| Lipschutz Seymour — Schaum's Outline of Theory and Problems of Linear Algebra (Schaum's Outlines) | 52 |
| Barbeau E.J. — Polynomials: a problem book | 13, 212 |
| Wedderburn J.H.M. — Lectures on Matrices | 125 ff., 171 |
| Lightstone A.H., Robinson A. — Nonarchimedean Fields and Asymptotic Expansions | 12 |
| de Branges L., Rovnyak J. — Square summable power series | 1 |
| Whittaker E.T., Watson G.N. — A Course of Modern Analysis | see Modulus |
| Conway J.B. — Functions of One Complex Variable | 2 |
| Weinberger H.F. — First course in partial defferential equations with complex variables and transform methods | 204 |
| Takesaki M. — Theory of Operator Algebras II | 161, 174 |
| Smirnov V.I. — Higher mathematics. Vol.1 | 2 |
| Deitel H.M. — Visual C# How to Program | |
| Lane D. — Web Database Applications with PHP & MySQL | |
| Benson D. — Mathematics and music | 40, 345 |
| Lee J.M. — Introduction to Topological Manifolds | 20 |
| Maple 8. Learning guide | 9 |
| Maeder R.E. — Computer science with mathematica | 35 |
| Ahlfors L.V. — Complex analysis | 6—8 |
| Polya G., Latta G. — Complex Variables | 4 |
| Hahn L.Sh. — Complex Numbers and Geometry ( Spectrum Series) | 7 |
| Cherry W., Ye Z. — Nevanlinna's Theory of Value Distribution: The Second Main Theorem and Its Error Terms | 29 |
| Levine I.N. — Molecular Spectroscopy | 13 |
| Carslaw H.S. — Introduction to the Theory of Fourier's Series and Integrals | 32 |
| Deitel H.M. — C++ How to Program | |
| Dodge C.W. — Foundations of algebra and analysis | 165, 232 |
| Pedersen G.K. — C*-algebras and their automorphism groups | 3 |
| Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis | 190 |
| Franklin P. — Fourier Methods | 12 |
| Knopp K. — Elements of the Theory of Functions | 17, 31ff. |
| Steege R., Bailey K., Hademenos G.J. — Intermediate Algebra: Based on Schaum's Outline of Theory and Problems of Intermediate Algebra | 10 |
| Grillet P.A. — Abstract Algebra | 239, 239—266 |
| Rich B., Schmidt Ph. — Schaum's Outline of Elementary Algebra (Schaum's Outline Series) | 44 |
| Mill J.V. — The Infinite-Dimensional Topology of Function Spaces | 512 |
| Estep D.J. — Practical Analysis in One Variable | 24, 69 |
| Ash R.B. — Abstract algebra: the basic graduate year | 7.9 |
| Vojta P.A. — Diophantine Approximations and Value Distribution Theory | 1 |
| Sagan H. — Advanced Calculus of Real-Valued Functions of a Real Variable and Vector-Valued Functions of a Vector Variable | 25 |
| Coffin D. — Algebra and Pre-Calculus on the HP 48G/GX | 173, 180 |
| Coffin D. — Calculus on the HP-48G/GX | 222 |
| Enderton H.B. — Elements of set theory | 109, 118 |
| Searcid M. — Metric Spaces | 257 |
| Araki H. — Mathematical Theory of Quantum Fields | 203 |
| Ablowitz M.J., Fokas A.S. — Complex Variables: Introduction and Applications | 4 |
| Hahn L.- Sh., Epstein B. — Classical Complex Analysis | 5 |
| Hijab O. — Introduction to Calculus and Classical Analysis (Undergraduate Texts in Mathematics) | 13 |
| Lang S. — Diophantine Geometry | 44 |
| Thaller B. — Visual quantum mechanics | 3 |
| Shankar R. — Basic Training In Mathematics | 92 |
| Stillwell J. — Yearning for the Impossible: The Surprising Truths of Mathematics | 35 |
| Cohn P.M. — Algebraic numbers and algebraic functions | 1 |
| Spivak M. — Calculus | 11 |
| Fripp A., Fripp J., Fripp M. — Just-in-Time Math for Engineers | 9—10, 144 |
| Ayres F.J., Mendelson E. — Schaum's Outline of Calculus | 1 |
| Spiegel M.R., Stephens L.J. — Schaum's outline of theory and problems of statistics | 89 |
| Dickson L.E. — Elementary theory of equations | 24 |
| Lang S. — Undergraduate Algebra | 328, 342, 348 |
| Liu Q., Erne R. — Algebraic Geometry and Arithmetic Curves | 467 |
| Purdom R.W., Brown C.A. — The analysis of algorithms | 38, 123 |
| Lipschutz S.Ph.D. — Schaum's outline of theory and problems of finite mathematics | 259 |
| Cohn P.M. — Skew Fields : Theory of General Division Rings (Encyclopedia of Mathematics and its Applications) | 422 |
| Burn R.P. — Numbers and Functions: Steps to Analysis | 2.52—2.64, 3.33, 3.54 |
| Lawvere F.W., Schanuel S.H. — Conceptual Mathematics: A First Introduction to Categories | 34, 140, 188 |
| Bratteli O., Robinson D.W. — Operator Algebras and Quantum Statistical Mechanics (vol. 1) | 34 |
| Gallier J. — Geometric Methods and Applications: For Computer Science and Engineering | 532 |
| Alagić S., Arbib M.A. — The Design of Well-Structured and Correct Programs | 30 |
| Pap E. — Complex Analysis Through Examples And Exercises | 1 |
| Strichartz R.S. — The way of analysis | 20, 242 |
| Sakai S. — C*-algebras and W*-algebras | 8, 27 |
| Olds C.D. — Continued Fractions | 72 |
| Strang G. — Linear Algebra and Its Applications | 291 |
| Lyons R.G. — Understanding Digital Signal Processing | 9 |
| Hu S.-T. — Elements of real analysis | 42 |
| Bak J., Newman D.J. — Complex Analysis | 6 |
| Fine B., Rosenberger G. — Fundamental Theorem of Algebra | 11 |
| Li H., Gras G. — Class Field Theory: From Theory to Practice | 9, 14 |
| Bratteli O., Robinson D.W. — Operator Algebras and Quantum Statistical Mechanics (vol. 2) | 34 |
| D'Angelo J.P., West D.B. — Mathematical Thinking: Problem-Solving and Proofs | 4, 11, 19, 21, 88, 93, 259, 279, 305, 312, 326, 329, 351, 362, 3, 368, 370 |
| Wheeden R.L., Zygmund A. — Measure and integral. An introduction to real analysis | 3 |
| Olver P.J., Shakiban C. — Applied linear. algebra | 138 |
| Neukirch J. — Class Field Theory | 37, 72 |
| Burger E.B. — Exploring the Number Jungle: A Journey into Diophantine Analysis | 105 |
| Kreyszig E. — Advanced engineering mathematics | 607 |
| Bluman G.W. — Problem Book for First Year Calculus | 4, 96,198, (1.3, 15; VII.3, 6, 9; VIII.1.1-1.3, 2.3, 5.5-5.7, 6.2, 6.4, 7.12, 9.8, 10.11), [VIII.1.1,1.3-1.5, 3.35, 5.5-5.7, 7.33, 11.7, 11.8] |
| Fried M.D., Jarden M. — Field Arithmetic | 238 |
| Knuth D.E. — The art of computer programming (vol. 1 Fundàmental algorithms) | 21 |
| Mac Lane S., Birkhoff G.D. — Algebra | 264, 278 |
| Prestel A., Delzell C.N. — Positive Polynomials: From Hilbert's 17th Problem to Real Algebra (Springer Monographs in Mathematics) | 16n |
| Schlichenmaier M. — An Introduction to Riemann Surfaces, Algebraic Curves and Moduli Spaces | 134 |
| Faith C. — Rings and Things and a Fine Array of Twentieth Century Associative Algebra | 1.30ff |
| Kurosh A. — Higher Algebra | 113 |
| Knopp K. — Theory and applications of infinite series | 7, 390 |
| Stewart G.W., Sun J. — Matrix perturbation theory | 49 |
| Curtis M.L. — Abstract Linear Algebra | 6 |
| Hubbard J.R. — Theory and Problems of Programming with C++ | 84, 391, 392 |
| Moh T.T. — Algebra | 35 |
| C. Caratheodory, F. Steinhardt — Theory of Functions of a Complex Variable. 2 Volumes | 9 |
| Bridges D.S. — Foundations Of Real And Abstract Analysis | 15 |
| Kaplan W. — Introduction to analytic functions | 2 |
| Beaumont R.A., Pierce R.S. — The Algebraic Foundations of Mathematics | 132, 292 |
| Lang S. — Algebra | 465 |
| Thron W. — Introduction to the theory of functions of a complex variable | 23 |
| Snyder V., Hutchinson J.I. — Differential And Integral Calculus | 59 |
| Onishchik A.L. (ed.) — Lie Groups and Lie Algebras | 74 |
| Seymour L. — Schaum's Outline of Theory and Problems of Discrete Math | 54, 316 |
| Cohn P.M. — Algebraic Numbers and Algebraic Functions | 1 |
| Valentine F.A. — Convex Sets | 197 |
| Lang S. — Diophantine Geometry | 1 |
| Hu S.-T. — Introduction to contemporary mathematics | 60, 71, 83 |
| Berkeley E.C. — Giant Brains Or Machines That Think | 101, 222 |
| United States NAVY — Mathematics, basic math and algebra (Navy course) | 21 |
| Dienes P. — The Taylor series: An introduction to the theory of functions of a complex variable | 48 |
| Nehari Z. — Conformal mapping | 53 |
| Aliprantis C. — Principles of real analysis | 16 |
| Goldstein L.J. — Analytic Number Theory | 20ff |
| B.M. Stewart — Theory of Numbers | 7, 303 |
| Birkhoff G., Mac Lane S. — A Survey of Modern Algebra | 10 |
| Onishchik A.L. (ed.) — Lie Groups and Lie Algebras (volume 1) | 74 |
| Bettinger A.K. — Algebra and Trigonometry (International Textbooks in Mathematics) | 14, 57 |
| Knopp K., Bagemihl F. — Infinite Sequences and Series | 10 |
| Prasolov V.V., Tikhomirov V.M. — Geometry | 11 |
| Borovik A.V. — Mathematics under the microscope | 4 |
| Kazarinoff N. — Analytic inequalities | 7 |
| Courant R., John F. — Introduction to Calculus and Analysis. Volume 1 | 3, 104 |
| Gorbatsevich V.V., Vinberg E.B., Onishchik A.L. — Foundations of Lie theory and Lie transformation groups | 74 |
| McShane E.J., Botts T.A. — Real Analysis | 15 |
| Goodman A.W. — The Pleasures of Math | 22, 23 (probs. 14—17), 118 |
| Copeland A.H. — Geometry, algebra, and trigonometry by vector methods | 12, 71 |
| Marsden J., Weinstein A. — Calculus 1 | 22 |
| A. Prestel, P. Roquette — Formally p-adic Fields | 1 |
| Ore O. — Number theory and its history | 28, 348 |
| Cohen L.W., Ehrlich G. — The Structure of the Real Number System | 68 |
| Beckenbach E.F., Bellman R. — Introduction to Inequalities | 25—45 |
| McKeague C. P. — Trigonometry | 399, 438 |
| Hewitt E., Stromberg K. — Real and abstract analysis: a modern treatment of the theory of functions of a real variable | 48 |
| Silverman J. — The arithmetic of dynamical systems | 43 |
| Moh T.T. — Algebra | 35 |
| Gries D. — A Logical Approach to Discrete Math | 283, 314 |
| Loomis L.H., Sternberg S. — Advanced calculus | 121, 242 |
| Penney D.E. — Perspectives in Mathematics | 289 |
| Lane S.M. — Mathematics, form and function | 99 |
| Prestel A. — Formally P-Adic Fields | 1 |
| Cloud M.J., Drachman B.C. — Inequalities: with applications to engineering | 5 |
| Barry Steven, Davis Stephen — Essential Mathematical Skills: For Students of Engineering, Science and Applied Mathematics | 3 |
| Swinnerton-Dyer H.P.F. — A brief guide to algebraic number theory | 31 |
| Weil A. — Number theory for beginners | 62 |
| Bichteler K. — Integration Theory | 13 |
| Lipschutz S., Lipson M.L. — Schaum's outline of theory and problems of discrete mathematics | 54, 316 |
| Hildebrand F.B. — Advanced Calculus for Applications | 509 |
| Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | 190 |
| Kelley J., Namioka I. — Linear Topological Spaces | 230 |
| Daepp U., Gorkin P. — Reading, writing and proving. Close look at mathematics | 56 |
| Wrede R.C., Spiegel M. — Theory and problems of advanced calculus | 3 |
| Lang S. — Linear Algebra | 36 |
| Cohen G.L. — A Course in Modern Analysis and Its Applications | 4, 54 |
| Zeidler E. — Oxford User's Guide to Mathematics | 229 |
| Pier J.-P. — Mathematical Analysis during the 20th Century | 161 |
| Grimaldi R.P., Rothman D.J. — Discrete and Combinatorial Mathematics: An Applied Introduction | 219, 224 |
| Courant R., Robbins H. — What Is Mathematics?: An Elementary Approach to Ideas and Methods | 57 |
| Lancaster P. — Mathematics: Models of the Real World | 48, 75 |
| Spivak M. — Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus | 1 |
| Franklin P. — Differential and integral calculus | 2, 436 |
| Swinnerton-Dyer H. P. F., Swinnerton-Dyer P. — A brief guide to algebraic number threory | 31 |
| Courant R. — Differential and Integral Calculus, Vol. 1 | 6, 74 |
| Magurn B.A. — An algebraic introduction to k-theory | 572 |
| Abhyankar S.S. — Lectures on Algebra Volume 1 | 53—54 |
| Bell E.T. — Mathematics: Queen and Servant of Science | 158—161 |
| Passman D.S. — The algebraic structure of group rings | 33, 35 |
| Bonahon F. — Low-Dimensional Geometry: From Euclidean Surfaces to Hyperbolic Knots (Student Mathematical Library: Ias Park City Mathematical Subseries) | 23, 362 |
| Canuto C., Tabacco A. — Mathematical analysis | 13 |
| Davis P.J. — Mathematics of Matrices | 304 |
| Conger D. — Physics modelling for game programming | 51 |
| Ross D. — Master Math: Basic Math and Pre-Algebra (Master Math Series) | 21 |
| Mac Lane S. — Mathematics: Form and Function | 99 |
| Jacky J. — The Way of Z: Practical Programming with Formal Methods | 119, 215, 220 |
| Kupferschmid M. — Classical FORTRAN: Programming for Engineering and Scientific Applications | see "DABS", "ABS", "IABS" |
| Grimaldi R.P. — Student Solutions Manual for Discrete and Combinatorial Mathematics | 219, 224 |
| D'Angelo J.P., West D.B. — Mathematical thinking: problem-solving and proofs | 4, 11, 19—21, 88, 93, 259, 279, 305, 312, 326, 329, 351, 362—363, 368, 370 |
| Apostol T. — Mathematical Analysis, Second Edition | 13, 18 |
| Klein E. — Mathematical methods in theoretical economics | 22 |
| Truss J.K. — Foundations of Mathematical Analysis | 70, 102, 122 |
| Knuth D.E. — Selected papers on discrete mathematics | 20 |
| D'Angelo J.P. — Inequalities from Complex Analysis (Carus Mathematical Monographs) | 5 |
| Truss J. — Foundations of mathematical analysis | 70, 102, 122 |
| J. K. Truss — Foundations of mathematical analysis MCet | 70, 102, 122 |