| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
| Nagel R. — One-parameter semigroups of positive operators | 185, 190 |
| Agarwal R.P. — Difference Equations and Inequalities. Theory, Methods and Applications. | 774 |
| Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 191, 277, 416, 420 |
| Taylor M.E. — Partial Differential Equations. Qualitative studies of linear equations (vol. 2) | 39, 91, 153 |
| Nevanlinna R., Paatero V. — Introduction to Complex Analysis | 141, 237, 321 |
| Hunter J.K., Nachtergaele B. — Applied Analysis | 72 |
| Fritz J. — Lectures on advanced numerical analysis | 115 |
| Reed M., Simon B. — Methods of Modern mathematical physics (vol. 1) Functional analysis | 382—384 |
| Oksendal B. — Stochastic differential equations : an introduction with applications | 189 |
| Evans L.C. — Partial Differential Equations | 10 |
| Levin B.Ya. — Lectures on entire functions | 37 |
| Miranker W.L. — Numerical Methods for Stiff Equations and Singular Perturbation Problems | 192 |
| Donaldson K., Kronheimer P.B. — Geometry of Four-Manifolds | 221 |
| Molchanov I.I. — Limit theorems for unions of random closed sets | 36 |
| Zienkiewicz O.C., Taylor L.R. — The finite element method (vol. 1, The basis) | 76 |
| de Branges L., Rovnyak J. — Square summable power series | 17, 29, 68—70 |
| Axler S., Bourdon p., Ramey W. — Harmonic function theory | 7, 36 |
| Porter D., Stirling D.S.G. — Integral equations: a practical treatment, from spectral theory to applications | 206, 248, 249, 250, 256—257 |
| O'Malley R.E. — Introduction to Singular Perturbations | 9 |
| Weinberger H.F. — First course in partial defferential equations with complex variables and transform methods | 55—57, 59, 61, 94, 97, 101, 108, 111, 265, 320, 381 |
| Showalter R.E. — Monotone Operators in Banach Space and Nonlinear Partial Differential Equations | 148 |
| Hormander L. — Notions of Convexity | 121 |
| Joyce D.D. — Compact Manifolds with Special Holonomy | 16, 222 |
| Ahlfors L.V. — Complex analysis | 133—137, 164 |
| Winkler G. — Stochastic Integrals | 12.2.1f |
| Curtain R.F., Pritchard A.J. — Functional Analysis in Modern Applied Mathematics | 247 |
| Lojasiewicz S. — Introduction to Complex Analytic Geometry | 102, 118, 234, 236 |
| Kythe P.K., Schaferkotter M.R. — Partial Differential Equations and Mathematica | 228ff |
| F.Giannessi, F.Giannessi — Constrained Optimization and Image Space Analysis | 364 |
| Dafermos C.M. (ed.), Feireisl E. (ed.) — Evolutionary Equations, Vol. 1 | 9 |
| Chipot M., Quittner P. — Handbook of Differential Equations: Stationary Partial Differential Equations, Vol. 3 | 393, 423, 449, 570, 589, 590, 593 |
| Serre D. — Handbook of Mathematical Fluid Dynamics, Vol. 1 | 186—187 |
| Debnath L. — Linear Partial Differential Equations for Scientists and Engineers | 332 |
| Tarantello G. — Self-Dual Gauge Field Vortices: An Analytical Approach | 76, 132, 251 |
| Young R.M. — An Introduction to Non-Harmonic Fourier Series, Revised Edition | 62, 80, 95, 96, 174 |
| Joyce D.D. — Riemannian holonomy groups and calibrated Geometry | 15 |
| Powers D.L. — Boundary Value Problems: And Partial Differential Equations | 255, 278 |
| Petersen P. — Riemannian Geometry | 58, 279 |
| Chung K.L., Walsh J.B. — Markov Processes, Brownian Motion, and Time Symmetry | 394, see also "domination principle" |
| Keen L., Lakic N. — Table of Contents Hyperbolic Geometry from a Local Viewpoint | 55 |
| George C. — Exercises in Integration | 3.72, 6.123, 11.189 |
| Neittaanmaki P., Tiba D. — Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications | 171, 186, 210, 228, 264 |
| Oksendal B. — Stochastic Differential Equations: An Introduction With Applications | 200 |
| Hijab O. — Introduction to Calculus and Classical Analysis (Undergraduate Texts in Mathematics) | 81 |
| Malliaris A.G., Brock W.A. — Stochastic methods in economics and finance | 109—113, 124 |
| Newman J.R. — The World of Mathematics, Volume 2 | 882—883 |
| Borwein J., Bailey D., Girgensohn R. — Experimentation in Mathematics: Computational Paths to Discovery | 275 |
| Alfsen E.M. — Compact Convex Sets and Boundary Integrals | 36, 46 |
| Devaney R.L. — An introduction to chaotic dynamical systems | 263 |
| Reed M., Simon B. — Methods of Functional Analysis (in 4 volumes). Volume 1: Functional Analysis | 382- 384 |
| Friedlander S.J. (Ed), Serre D. (Ed) — Handbook of Mathematical Fluid Dynamics, Vol. 3 | 222 |
| Chabrowski J. — Dirichlet Problem with L2-Boundary Data for Elliptic Linear Equations | 79 |
| Egorov Y.U. (Ed), Gamkrelidze R.V. (Ed) — Partial Differential Equations I: Foundations of the Classical Theory | 24 |
| Besse A.L. — Einstein Manifolds | 173, 327, 328, 430, 466 |
| Fink A.M. — Almost Periodic Differential Equations | 13.1 |
| Arnold V.I., Khesin B.A. — Topological methods in hydrodynamics | 283 |
| Rall D. — Computational Solution to Nonlinear Operator Equations | 181 |
| Lin C.C., Segel L.A. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 123, 571—572 |
| Kannan D. (ed.), Lakshmikantham V. (ed.) — Handbook of stochastic analysis and applications | 24 |
| Chipot M., Quittner P. — Stationary Partial Differential Equations, Vol. 1 | 18, 19, 23, 24, 29–31, 50, 56, 57, 61, 123, 125, 320, 325, 374, 505, 534 |
| Singer I.M., Thorpe J.A. — Lecture Notes on Elementary Topology and Geometry | 4 |
| Zauderer E. — Partial Differential Equations of Applied Mathematics | 13, 31, 556, 560, 561 |
| Ferrera J. (Ed), Lopez-Gomez J. (Ed) — Ten Mathematical Essays on Approximation in Analysis and Topology | 11 |
| Greenberg M.D. — Advanced engineering mathematics | 1062, 1076 |
| Sheil-Small T. — Complex polynomials | 57 |
| Stakgold I. — Green's Functions and Boundary Value Problems | 64, 498, 593, 610 |
| Kozlov V., Mazya V., Rossmann J. — Spectral problems associated with corner singularities of solutions to elliptic equations | 104 |
| Aubin T. — Nonlinear Analysis on Manifolds: Monge-Ampere Equations | 96, 97 |
| Newman J.R. (ed.) — The World of Mathematics, Volume 4 | 882—883 |
| Struwe M., Rappoport M. — Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems | 42, 219 ff. |
| Havin V.P., Nikolski N.K. (eds.) — Linear and Complex Analysis Problem Book 3 (part 2) | 14.0 |
| Vuorinen M. — Conformal geometry and quasiregular mappings | 127 |
| Allaire G. — Numerical Analysis and Optimization: An Introduction to Mathematical Modelling and Numerical Simulation | 8, 20, 38, 127, 165, 255, 262 |
| McCoy N.H. — Rings and ideals | 101 |
| Munkres J. — Topology | 69 |
| Young R.M. — An Introduction to Nonharmonic Fourier Series | 62, 80, 95, 96, 174 |
| Courant R., Hilbert D. — Methods of Mathematical Physics, Vol. 2 | 255, 268, 326 — 331 |
| Grimmett G., Stirzaker D. — Probability and Random Processes | 559 |
| Abhyankar S.S. — Local Analytic Geometry | 34, 60, 61, 93, 299, 300, 418, 419 |
| Fine B., Rosenberger G. — Fundamental Theorem of Algebra | 72 |
| Asmar N.H. — Partial Differential Equations with fourier series and boundary value problems | 169, 187 |
| Axellson O., Barker V.A. — Finite Element Solution of Boundary Value Problems. Theory and Computation | 257 |
| Meyer Y. — Wavelets and Operators | 44 |
| Egorov Y.V., Shubin M.A. — Partial Differential Equations I (Foundations of the Classical) | 24 |
| Antia H.M. — Numerical Methods for Scientists and Engineers | 641 |
| Steeb W.- H. — Problems and Solutions in Introductory and Advanced Matrix Calculus | 82 |
| Steele M.J. — Stochastic Calculus and Financial Applications | 179 |
| Neubrander F. (Ed), Ferreyra G.S. (Ed) — Evolution Equations, Vol. 168 | 6, 269 |
| Sequeira A., da Veiga H.B., Videman J.H. — Applied Nonlinear Analysis | 355 |
| Baldi P., Mazliak L., Priouret P. — Martingales and Markov Chains: Solved Exercises and Elements of Theory | 82, 102 |
| Kigami J. — Analysis on Fractals | 45, 52, 76, 77, 81 |
| Lelong P., Gruman L. — Entire functions of several complex variables | 234 |
| Browder A. — Mathematical Analysis: An Introduction | 316 |
| Denn M. — Optimization by variational methods | see Minimum principle |
| Cordes H. — Elliptic Pseudo-Differential Operators - An Abstract Theory | 125 |
| Ortega J.M. — Numerical analysis: a second course | 96ff |
| Nehari Z. — Conformal mapping | 119 |
| Runst T. — Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations | 137, 441, 456 |
| Zhang B. G., Yong Z. — Qualitative analysis of delay partial difference equations | 326 |
| Kythe P.K., Puri P. — Partial differential equations and Mathematica | 228ff |
| Hille E. — Methods in classical and functional analysis | 256, 272 |
| Davis H. F., Snider A. D. — Introduction to Vector Analysis | 22 |
| Munkres J.R. — Topology: A First Course | 69 |
| Vladimirov V. S. — Equations of mathematical physics | 283, 285, 405 |
| Fluegge S. (ed.) — Encyclopedia of physics. Vol. 9. Fluid dynamics III | 380 |
| Schulz F., Dold A. (Ed), Eckmann B. (Ed) — Regularity Theory for Quasilinear Elliptic Systems and Monge-Ampere Equations in Two Dimensions | 25 |
| Rodin Y.L. — Generalized Analytic Functions On Riemann Surfaces | 83 |
| Müller R. — Differential harnack inequalities and the ricci flow | 29 |
| Varga R.S. — Matrix iterative analysis | 206, 280 |
| Taylor M.E. — Partial Differential Equations. Nonlinear Equations (vol. 3) | 94, 153, 157, 181, 185, 204, 244, 277, 334 |
| Adams D.R., Hedberg L.I. — Function spaces and potential theory | 40, 82, 279 |
| Rudin W. — Function theory in polydiscs | 21 |
| Carroll R.W. — Mathematical physics | 20, 24 |
| Neuenschwander D. — Probabilities on the Heisenberg Group: Limit Theorems and Brownian Motion, Vol. 163 | 22 |
| Stakgold I. — Green's functions and boundary value problems | 64, 498, 593, 610 |
| Beckenbach E.F., Bellman R. — Inequalities | 132, 133 |
| Joyce D.D. — Compact manifolds with special holonomy | 16, 222 |
| Rubinstein I. — Electro-diffusion of ions | 26, 29, 45, 73 |
| Luenberger D.G. — Introduction to dynamic systems | 394, 400, 407, 411 |
| Lane S.M. — Mathematics, form and function | 341 |
| Hinrichsen D., Pritchard A. — Mathematical Systems Theory I: Modelling, State Space Analysis, Stability and Robustness | 588, 592 |
| Chung K.L., Walsh J.B — Markov Processes, Brownian Motion, and Time Symmetry | 394, see also "Domination principle" |
| Thirring W., Harrell E.M. — Quantum Mathematical Physics. Atoms, Molecules and Large many-body Systems | 397 |
| Strang G. — Introduction to Applied Mathematics | 195, 355, 365, 533 |
| Veselic I. — Integrated density of states and Wegner estimates for random Schrodinger operators | 26 |
| Intriligator M.D. — Mathematical optimization and economic theory | 344—369 |
| Morel J.-M., Solimini S. — Variational Models for Image Segmentation: with seven image processing experiments (Progress in Nonlinear Differential Equations and Their Applications) | (13.5) |
| Kozlov V., Mazya V., Rossmann J. — Elliptic boundary value problems in domains with point singularities | 136 |
| Collatz L. — Functional analysis and numerical mathematics | 383 |
| Lemm J.M., Meurant G. — Computer Solution of Large Linear Systems | 24 |
| Fritzsche K., Grauert H. — From Holomorphic Functions To Complex Manifolds | 22 |
| Henry D. — Geometric Theory of Semilinear Parabolic Equations | 60, 61, 109 |
| John F. — Partial Differential Equations | 101—106, 112, 210, 215, 216, 229 |
| Achdou Y., Pironneau O. — Computational methods for option pricing | 35, 190 |
| Friedman A., Littman W. — Industrial Mathematics: A Course in Solving Real-World Problems | 74, 75, 78, 114, 118, 129 |
| Flanders H. — Differential Forms with Applications to the Physical Sciences | 85 |
| Joyce D. — Riemannian Holonomy Groups and Calibrated Geometry (Oxford Graduate Texts in Mathematics) | 15 |
| Samarskii A.A. — The Theory of Difference Schemes | 15, 20, 260 |
| Fuchssteiner B., Lusky W. — Convex Cones (North-Holland Mathematics Studies) | 20, 40, 256, 267 |
| Lin C., Segel L. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 123, 571—572 |
| Lin C., Segel L. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 123, 571—572 |
| Logan J. — Applied Mathematics: A Contemporary Approach | 168 |
| Lin C., Segel L. — Mathematics applied to deterministic problems in the natural sciences | 123, 571—572 |
| Morrey C. — Multiple integrals in the calculus of variations | 40, 61 |
| Beckenbach E., Bellman R. — Inequalities (Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge) | 132, 133 |
| Cholewa J., Dlotko T. — Global Attractors in Abstract Parabolic Problems (London Mathematical Society Lecture Note Series) | 211, 216 |
| Lyndon R., Schupp P. — Combinatorial Group Theory (Classics in Mathematics) | 129 |
| Gripenberg G., Londen S.O., Staffans O. — Volterra integral and functional equations | 494, 497, 513 |
| Jost J. — Bosonic Strings: A mathematical treatment | 38 |
| Mangasarian O. — Nonlinear programming | see "Minimum principle" |
| Ferziger J.H., Kaper H.G. — Mathematical theory of transport processes in gases | 134, 181 |