Авторизация
Поиск по указателям
Morrey C. — Multiple integrals in the calculus of variations
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Multiple integrals in the calculus of variations
Автор: Morrey C.
Аннотация: From the reviews: "…the book contains a wealth of material essential to the researcher concerned with multiple integral variational problems and with elliptic partial differential equations. The book not only reports the researches of the author but also the contributions of his contemporaries in the same and related fields. The book undoubtedly will become a standard reference for researchers in these areas. …The book is addressed mainly to mature mathematical analysts. However, any student of analysis will be greatly rewarded by a careful study of this book."
M. R. Hestenes in Journal of Optimization Theory and Applications
"The work intertwines in masterly fashion results of classical analysis, topology, and the theory of manifolds and thus presents a comprehensive treatise of the theory of multiple integral variational problems."
L. Schmetterer in Monatshefte f?r Mathematik
"The book is very clearly exposed and contains the last modern theory in this domain. A comprehensive bibliography ends the book."
M. Coroi-Nedeleu in Revue Roumaine de Math?matiques Pures et Appliqu?es
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1966
Количество страниц: 506
Добавлена в каталог: 21.02.2014
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
374 380
373 380
cohomology 322
-Neumann problem 320
Admissible boundary coordinate system 300
Admissible coordinate system 300
Admissible measure 489
Algebraic boundary b(X, A) 411
Area integral 1
Basis (for complex 1 forms) 331
Basis, orthogonal 332
Boundary b M of M 300
Boundary operator 319
Boundary values 76
Bounded slope condition 98
Calderon — Zygmund inequalities 56 58
Calderon's extension theorem 74
Cauchy inequality 35
Class (A, L) 411
Closed forms (d ) 299
Coerciveness inequality 253
Complementing condition 212
Complex Dirichlet integral 320
Complex improper integral 174
Complex-analytic manifold 317
Contractible 414
Convex function 21
Convex set 21
Cover (in the sence of Vitali) 409
Dini condition 54
Direct methods 16
Dirichlet data 252
Dirichlet growth condition 32
Dirichlet growth lemma 79
Dirichlet integral 1
Dirichlet integral for forms 291 320
Dirichlet's principle 5
Dirtchlet problem 44
Distance 439
Distance between Erechet varieties 351
Distance between mappings [D(z1,z2)] 350
Distance geodesic 378
Distance point set 406
Distribution derivatives 20
Domain 181
Domain 174
Domain 181
Domain Lipschitz (of class ) 25 77
Domain of class , analytic 4
Domain of class 384
Domain strongly Lipschitz 72
Domain with regular boundary 72
Elementary function 43
Elliptic systems (of differential equations) 210
Euler's equations 2 7 8
Exterior co-differential 290
Exterior derivative 290
Exterior differential r-forms 288
Extremal 32
Federer's convergence property 492
Federer's multiplicity function 480
Field of extremals 14
First differential 31
First variation 7 8
Form, closed 299
Form, closed, -flat 299
Form, closed, complex, of type (p,q) 318
Form, closed, even 288
Form, closed, exterior differential 288
Form, closed, in , 288
Form, closed, normal part of a 301 302
Form, closed, odd 288
Form, potential of a 295 314
Form, tangential part of a 301 302
Frechet variety 351
Frechet variety on a manifold 379
Frechet variety oriented 353
Friedrichs mollifier 20
Function, absolutely continuous in the sense of Tonelli 19 67
Function, admissible 8
Function, essentially homogeneous of degree p 47
Function, mollified 20
Function, monotone in the sense of Lebesgue 16 17
Function, of class 4
Function, of class , 20
Function, quasi-convex 112
Function, strongly in 114
Function, strongly quasi-convex 114
Gaffney-garding inequality 293
Garding’s inequality 253
Generalized derivatives 62
Generalized surface 354
Geodesic cones C(P,S), C( ,S) 409 410
Geodesic k-plane 406
Geodesic k-plane centered at P 406
Gradient, 1
Green's function 44
Harmonic field 294
Harmonic form 316
Harmonic function 40
Hausdorff outer measure 350 408
Hermitean metric 317
Hilbert transform 55
Hilbert's invariant integral 14
Hoelder condition 4
Hopf's extension theorem 482 483
Inner product, 333
Inner product, 320
Inner product, localized (of forms) 302
Inner product, of complex forms 319
Inner product, of complex forms, localized 319
Inner product, of forms in 289
Inner product, of forms in 2 288
Integral in parametric form 2 349
Integrals over oriented Frechet varieties 353
Integrand, normal 92
Integrand, normal of a parametric problem 349
Integrand, of type I 96
Integrand, of type II 97
Jacobi condition 15
Jacobi's equation 13
Jensen's inequality 21
Kodaira decomposition 286 298 312 322
Laplace's equation 43
Lebesgue area of a Frechet surface 352
Legendre condition 2 10
Legendre — Hadamard condition 11
Linear functionals on 70
Linear sets 312
Lipschitz condition 4
Lipschitz convergence 113
Lipschitz domain (of class ) 25
Localized inner product 301
Localized inner product of complex forms 319
Manifold with boundary (of class , etc.) 300
Mapping, 453
Mapping, 454
Mapping, 454
Mapping, abcolutely continious 379 382
Mapping, light 489
Mapping, monotone 489
Mapping, of class 382
Mapping, of class 379
Maximum principle 40 61
Mean value properties of harmonic functions 40 41
Measurable mappings 378
Minimizing sequences 16
Minimum conditions (on a general elliptic system) 215
Minus potential (of a form) 310
Multinomial coefficient 63
n-th gradient 4
Norm 338
Norm 337
Norm for complex forms 342
Normal coordinate system 402
Normal coordinate system centered at a point q on 402
Normal part (of a form) 301 302
Operator , for complex forms 320
Operator , for complex forms 319
Operator b, for complex forms 319
Operator L, for complex forms 321
Operator N, for complex forms 321
Order 0[z, ] 356 357 359 480
Oriented Frechet variety 353
Orthogonal basis 332
Parallel geodesic planes 443
Parametric representation 351
Plus potential (of a form) 310
Poincare’s inequality 69
Point set distance D( , ) 406
Poisson’s equation 47
Poisson’s integral formula 45 46
Polyhedral cone 460
Potential 47
Potential of a form 259 314
Principal part (of a differential operator) 210
Problem of Plateau in 375 376
Projection 485
Projection on a geodesic p-plane 435
Properly elliptic system 211
Quasi-linear equations 8
Quasi-potential 86
Reflection principle 54
Regular mapping 64
Regular parametric problem 32
Regular Variational problem 8 11
Reifenberg cone inequality 459 460
Reifenberg's ( , R1) condition 433
Rellich's theorem 75
Riemannian manifold of class 288
Root condition 211
Second variation 10
Set (S, ) 406
Sets , 453
Simplicial cone 460
Singular integrals 50
Slope functions 14
Sobolev lemmas 78 80
Sobolev spaces 19 20
Sobolev’s embedding theorem 80
Space 20 288
Space 68
Space (of mappings) 378
Space 318
Space 319
Space and 378
Space 320
Space , of complex forms 320
Space 21
Space 321
Space of complex harmonic fields 321
Space 343
Space , L 319
Space 288
Spherical harmonics 73 474
Stokes' theorem 290
Strong relative minimum 12
Strongly elliptic system 252
Strongly Lipschitz domain 72
Strongly pseudo-convex boundary 318
Supplementary conditions 211
Tangential coordinate system 321
Tangential part (of a form) 301 302
Topological type (of a Frechet variety) 351
Transversality conditions 2
Uniformly elliptic system 211
Weak convergence in 70
Weak convergence of maps in 385
Weak solutions 33
Weakly differentiable functions 97
Weierstrass condition 2 12
Weierstrass E-function 12
Weyl’s lemma 41 42
Реклама