| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
| Guillemin V., Pollack A. — Differential topology | 52 |
| Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 536 |
| Rudin W. — Principles of Mathematical Analysis | 251 |
| Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 425.R |
| Evans L.C. — Partial Differential Equations | 251, 253, 256, 260, 290 |
| Bulirsch R., Stoer J. — Introduction to numerical analysis | 109 |
| Piegl L.A.,, Tiller W. — The NURBS Book (Monographs in Visual Communication) | 16, 27, 38, 57, 118, 128 |
| Lee J.M. — Differential and Physical Geometry | 129 |
| Eisenbud D., Harris J. — The Geometry of Schemes | 20 |
| Felsager B. — Geometry, particles and fields | 406 |
| Zienkiewicz O.C., Taylor L.R. — The finite element method (vol. 1, The basis) | 166, 430, 442, 445, 457 |
| Hicks N. — Notes on differential geometry | 85 |
| Stein E.M. — Singular integrals and differentiability properties of functions | 170 |
| Rudin W. — Real and Complex Analysis | 40 |
| Miranda R. — Graduate studies in mathematics (vol.5). Algebraic curves and Riemann surfaces | 302 |
| Lee J.M. — Riemannian Manifolds: an Introduction to Curvature | 15, 23 |
| Michor P.W. — Manifolds of Differentiable Mappings | 78 |
| Springer G. — Introduction to Riemann Surfaces | 148 |
| Gunning R. — Lectures on Riemann Surfaces | 35 |
| Buss S.R. — 3-D computer graphics. A mathematical introduction with openGL | 203 |
| Lee J.M. — Introduction to Smooth Manifolds | 37 |
| Rosenberg J. — Algebraic K-Theory and Its Applications | 1.6.3, 5.1.4 |
| Ward R.S., Wells R.O. — Twistor geometry and field theory | 98, 122, 146, 183, 184, 186, 329, 480 |
| Katznelson Y. — Introduction to Harmonic Analysis | 222 |
| Landsman N.P. — Mathematical topics between classical and quantum mechanics | 446 |
| Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 134 |
| Kriegl A., Michor P.W. — The Convenient Setting of Global Analysis | 165 |
| Adams R.A. — Sobolev Spaces | 51 |
| Katznelson Y. — Introduction to Harmonic Analysis | 236 |
| Gracia-Bondia J.M., Varilly J.C., Figueroa H. — Elements of Noncommutative Geometry | 20, 50 |
| Kirwan F. — An Introduction to Intersection Homology Theory | §5.2 |
| Hirzebruch F. — Topological Methods in Algebraic Geometry | 30 |
| Higson N., Roe J. — Analytic K-Homology | 244 |
| Krantz S.G. — Function Theory of Several Complex Variables | 4 |
| Jetter K. (Ed), Schaback R. (Ed) — Topics in Multivariate Approximation and Interpolation | 243 |
| Yang K. — Complex Algebraic Geometry: An Introduction to Curves and Surfaces | 46 |
| Wall C.T., Bruce J.W. (Ed) — Singular Points of Plane Curves | 106 |
| Dugunji J. — Topology | 169 |
| Montiel S., Ros A. — Curves and Surfaces | 143 |
| Boothby W.M. — An introduction to differentiable manifolds and riemannian geometry | 193—198 |
| Köthe G. — Topological vector spaces II | 255 |
| Zoladek H. — Monodromy Group | 53 |
| Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 452 |
| Naber G.L. — Topology, Geometry and Gauge Fields | 163 |
| Bamberg P.G. — A Course in Mathematics for Students of Physics, Vol. 2 | 559, 562 |
| Ziemer W.P. — Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation | 2.3(53) |
| Kobayashi S., Nomizu K. — Foundations of Differential Geometry, Volume 2 | I-272 |
| Brickell F., Clark R.S. — Differentiable Manifolds | 46 |
| Borovikov V.A. — Uniform stationary phase method | 15 |
| Henneaux M., Teitelboim C. — Quantization of Gauge Systems | 41, 201, 229, 286 |
| Lang S. — Real Analysis | 390, 397, 492 |
| Helgason S. — Differential Geometry, Lie Groups and Symmetric Spaces | 8 |
| Morita S. — Geometry of differential forms | 29 |
| Singer I.M., Thorpe J.A. — Lecture Notes on Elementary Topology and Geometry | 132 |
| Rudin W. — Real and complex analysis | 40 |
| Golubitsky M., Guillemin V. — Stable Mappings and Their Singularities | 16 |
| Morita Sh. — Geometry of Differential Forms | 29 |
| Dieudonne J.A. — Treatise on Analysis, Vol. 2 | 12.6 |
| Behrends E. — M-Structure and the Banach-Stone Theorem | 5 |
| Serre J.-P. — Lectures on the Mordell-Weil Theorem | 84 |
| Brocker Th., Dieck T.T. — Representations of Compact Lie Groups | 44, 53 |
| Kammler D.W. — First Course in Fourier Analysis | 171, 446, 622 |
| do Carmo M.P. — Riemannian geometry | 30 |
| O'Neill B. — Semi-Riemannian Geometry: With Applications to Relativity | 22 |
| Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds | 221 |
| Munkres J.R. — Analysis on manifolds | 139 |
| Goswami J.C., Chan A.K. — Fundamentals of Wavelets : Theory, Algorithms, and Applications | 45, 102, 281 |
| Fomenko À.Ò., Mishehenko A.S. — A Short Course in Differential Geometry and Topology | 54 |
| Munkres J. — Topology | 225, 258 |
| Granas A., Dugundji J. — Fixed Point Theory | 597 |
| Janich K. — Topology | 116 |
| Fabian M.J., Hajek P., Pelant J. — Functional Analysis and Infinite-Dimensional Geometry | 328 |
| Tamura I. — Topology of lie groups, I and II | 50 |
| Wong K. — Asymptotic Approximations of Integrals | 246 |
| Hormander L. — The analysis of linear partial differential operators I | 28 |
| Zeidler E. — Nonlinear Functional Analysis and Its Applications: Part 1: Fixed-Point Theorems | 756 |
| Conway J.B. — A Course in Functional Analysis | 143 |
| Schlichenmaier M. — An Introduction to Riemann Surfaces, Algebraic Curves and Moduli Spaces | 2 |
| Narasimhan R. — Analysis on Real and Complex Manifolds | 11, 66 |
| Anderson G.A., Granas A. — Fixed Point Theory | 597 |
| Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142) | 263, 270, 271, 536 |
| Boothby W.M. — An Introduction to Differentiable Manifolds and Riemannian Geometry | 193—198 |
| Haller G. — Chaos Near Resonance | 389 |
| Mangiarotti L., Sardanashvily G. — Connections in Classical and Quantum Field Theory | 281 |
| Sarfraz M. — Advances in geometric modeling | 82, 108, 110 |
| Nash C. — Differential Topology and Quantum Field Theory | 48, 61 |
| Bishop R.L., Crittenden R.J. — Geometry of manifolds | 4 |
| Farin G. — Curves and surfaces for computer aided geometric design | 153 |
| Morrow J., Kodaira K. — Complex Manifolds | 61 |
| Friedlander F.G. — The Wave Equation on a Curved Space-Time | 4 |
| Dold A. — Lectures on Algebraic Topology | 354 |
| Lee J.M. — Differential and physical geometry | 129 |
| Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity | 118 |
| Browder A. — Mathematical Analysis: An Introduction | 298, 299 |
| Eisenbud D., Harris J. — The geometry of schemes (textbook draft) | 20 |
| Morita S. — Geometry of Differential Forms | 29 |
| Goffman C. — Calculus of several variables | 139 |
| Grosche C. — Path integrals, hyperbolic spaces, and Selberg trace formulae | 118 |
| Brickell F., Clark R.S. — Differentiable manifolds | 46 |
| Hermann R. — Differential geometry and the calculus of variations | 50, 52, 61, 70 |
| Hu S.T. — Introduction to general topology | 118 |
| Lindenstrauss J., Tzafriri L. — Classical Banach Spaces I, II | 94 |
| Duistermaat J.J, Kolk J.A.C. — Distributions: theory and applications | 20 |
| Aliprantis C. — Principles of real analysis | 86 |
| Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 214 |
| Goswami J., Chan A. — Fundamentals of Wavelets. Theory, Algorithms, and Applications | 45, 102, 281 |
| Marathe K.B., Martucci G. — The mathematical foundations of gauge theories | 300 |
| Kobayashi S., Nomizu K. — Foundations of Differential Geometry, Volume 1 | 272 |
| Munkres J.R. — Topology: A First Course | 222, 225 |
| Stein E.M. — Singular Integrals and Differentiability Properties of Functions | 170 |
| Springer G. — Introduction to Riemann Surfaces | 148 |
| Gelbaum B.R. — Problems in Real and Complex Analysis | 6.1. 72 |
| Adams D.R., Hedberg L.I. — Function spaces and potential theory | 86 |
| Vasil'ev V. A., Sossinski A. — Introduction to Topology | 55 |
| Krantz S.G. — Function theory of several complex variables | 4 |
| Carroll R.W. — Mathematical physics | 247, 347, 353 |
| Kuttler K.L. — Modern Analysis | 155, 539, 541 |
| Donoghue W.F. — Distributions and Fourier transforms | 93 |
| Kirillov A.A., Gvishiani A.D., McFaden H.H. — Theorems and Problems in Functional Analysis | 190 |
| Loomis L.H., Sternberg S. — Advanced calculus | 405 |
| Tuynman G.M. — Supermanifolds and Supergroups: Basic Theory | 95, 128, 135, 136, 159, 167, 175, 194, 195, 197, 199, 263 |
| Frankel T. — The geometry of physics: an introduction | 107 |
| Howes N.R — Modern Analysis and Topology | 5 |
| Kechris A.S., Louveau A. — Descriptive Set Theory and the Structure of Sets of Uniqueness | 60 |
| Naber G.L. — Topology, Geometry and Gauge Fields | 163 |
| Wong R. — Asymptotic approximations of integrals | 246 |
| Ðàäèîðåëåéíàÿ ñòàíöèÿ òèïà Ð-414. Òåõíè÷åñêîå îïèñàíèå. Êíèãà âòîðàÿ | 61 |
| Dydak J., Segal J. — Shape Theory: An Introduction | 20 |
| Hazewinkel M. — Handbook of Algebra (÷àñòü 1) | 133 |
| Wald R.M. — General Relativity | 427 |
| Fritzsche K., Grauert H. — From Holomorphic Functions To Complex Manifolds | 163 |
| Treves F. — Topological Vector Spaces, Distributions And Kernels | 164 |
| Spivak M. — Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus | 63 |
| John F. — Partial Differential Equations | 196 |
| Greub W., Halperin S., Vanstone R. — Connections, curvature, and cohomology. Volume 1 | 32 |
| Dynkin E. — An Introduction to Branching Measure-Valued Processes | 102 |
| Sinclair A., Smith R. — Hochschild Cohomology of Von Neumann Algebras (London Mathematical Society Lecture Note Series) | 75 |
| Ruelle D. — Elements of Differentiable Dynamics and Bifurcation Theory | 144 |
| Milnor J.W., Stasheff J.D. — Characteristic Classes. (Am-76), Vol. 76 | 23, 210 |
| Nikolsky S.M. — A Course of Mathematical Analysis (Vol. 2) | 335 |
| Frankel T. — The geometry of physics: An introduction | 107 |
| Necas J., Hlavacek I. — Mathematical Theory of Elastic and Elastico-Plastic Bodies: An Introduction | 83 |
| Santalo L., Kac M. — Integral geometry and geometric probability | 362 |
| Zorich V.A., Cooke R. — Mathematical analysis II | 148, 331—333 |
| Cheney W. — Analysis for Applied Mathematics | 282 |
| Zorich V. — Mathematical Analysis | 148, 331—333 |
| Fritsch R., Piccinini R. — Cellular Structures in Topology (Cambridge Studies in Advanced Mathematics 19) | 249 |
| Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 214 |
| Azcarraga J., Izquierdo J. — Lie groups, Lie algebras, cohomology and some applications in physics | 42 |
| Griffiths P., Harris J. — Principles of algebraic geometry | 42 |
| Nash C., Sen S. — Topology and geometry for physicists | 45—46, 132—133 |
| Morita S. — Geometry of Differential Forms (Translations of Mathematical Monographs, Vol. 201) | 29 |
| Vretblad A. — Fourier Analysis and Its Applications (Graduate Texts in Mathematics) | 203 |
| Lundell A., Weingram S. — The topology of CW complexes | 201 |