Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Sinclair A., Smith R. — Hochschild Cohomology of Von Neumann Algebras (London Mathematical Society Lecture Note Series)
Sinclair A., Smith R. — Hochschild Cohomology of Von Neumann Algebras (London Mathematical Society Lecture Note Series)



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Hochschild Cohomology of Von Neumann Algebras (London Mathematical Society Lecture Note Series)

Авторы: Sinclair A., Smith R.

Аннотация:

The subject of this book is the continuous Hochschild cohomology of dual normal modules over a von Neumann algebra. The authors develop the necessary technical results, assuming a familiarity with basic C*-algebra and von Neumann algebra theory, including the decomposition into types, but no prior knowledge of cohomology theory is required and the theory of completely bounded and multilinear operators is given fully. Those cases when the continuous Hochschild cohomology Hn(M,M) of the von Neumann algebra M over itself is zero are central to this book. The material in this book lies in the area common to Banach algebras, operator algebras and homological algebra, and will be of interest to researchers from these fields.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1995

Количество страниц: 202

Добавлена в каталог: 06.12.2014

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Amenability      5
Amenable group      77
Archimedean order      20
Arveson's theorem      17
Automorphism      159
Automorphism, inner      132
Banach limit      18
Bounded group cohomology      170
Cartan subalgebra      8 113 122 125
Coboundary      3
Coboundary operator      2
Cocycle      3
Cohomology group      3
Cohomology group, completely bounded      6
Cohomology group, normal      3
Commutant      7
Commutant, relative      8
Commutant, trivial relative      113
Commutator      102
Conditional expectation      9 110 135
Cyclic vector      11 47
Derivation      3 6 60
Derivation, inner      3
Differential      170
Double commutant theorem      9
Dual normal module      6
Fundamental group      179
GNS representation      8
Group, amenable      77
Group, cohomology      8
Group, compact unitary      77
Group, infinite conjugacy class      178
Haar measure      5 6 80
Hochschild complex      3
Injective norm      32
Invariant mean      77 80
Inversion constant      162
Kaplansky density theorem      9
Map, (A, B)-bimodule      47
Map, A-multimodular      49
Map, bilinear      39
Map, completely bounded      5 6 11 12
Map, completely contractive      12
Map, completely positive      6 11 12
MASA      7 113
Masa, singular      149
Matrix ordered space      19
Module      1
normalizer      125
Numerical range      72
Operator space      11
Operator system      11 17
Order unit      20
Partition of unity      75
Pisier — Haagerup — Grothendieck inequality      132
Popa subfactor      117
Principal component      160
Projection      9
Projection, central      45
Property $\Gamma$      8 145 150
Property T      179
Representation      12
Representation, normal      45
Representation, universal      96
Stability      164
Standard form      9
State space      23
Stinespring's theorem      12
Stone — Cech compactification      151
Tensor product, Haagerup      6 8 29
Tensor product, maximal      65
Tensor product, minimal      64
Tensor product, spatial      65
Trace      9
von Neumann algebra, amenable      4
von Neumann algebra, hyperfinite      4 59 77
von Neumann algebra, injective      49
Wittstock's theorem      59
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте