| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà | 
| Nagel R. — One-parameter semigroups of positive operators | 13 | 
| Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 216, 235, 415, 423 | 
| Taylor M.E. — Partial Differential Equations. Qualitative studies of linear equations (vol. 2) | 88, 95, 265, 303 | 
| Heinbockel J.H. — Introduction to tensor calculus and continuum mechanics | 316 | 
| Abell M., Braselton J. — Differential Equations with Mathematica | 552 | 
| Grubb G. — Functional Calculus of Pseudo-Differential Boundary Problems | 1.5.1, 4.1, 4.2 | 
| Hunter J.K., Nachtergaele B. — Applied Analysis | 69, 161 | 
| Fritz J. — Lectures on advanced numerical analysis | 106 | 
| Berline N., Getzler E., Vergne M. — Heat Kernels and Dirac Operators | 75 | 
| Apostol T.M. — Calculus (vol 2) | 292 (Exercise 1) | 
| Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 327.A, App. A, Table 15.VI | 
| Berger M. — A Panoramic View of Riemannian Geometry | 79, 100—104, 405 | 
| Falconer K. — Fractal Geometry: Mathematical Foundations and Applications | 303 | 
| Evans L.C. — Partial Differential Equations | 4, 9, 44—65, 172 | 
| Acheson David — From calculus to chaos | 99 | 
| Olver P.J. — Equivalence, Invariants and Symmetry | 182, 185, 210 | 
| Neta B. — Numerical solution of partial differential equations | 4 | 
| Golub G.H., Ortega J.M. — Scientific Computing and Differential Equations : An Introduction to Numerical Methods | 247ff, 253ff, 273ff, 279ff | 
| Mathews J.H., Fink K.D. — Numerical Methods Using MATLAB | 515 | 
| Donaldson K., Kronheimer P.B. — Geometry of Four-Manifolds | 217, 221 | 
| Birkenhake C., Lange H. — Complex Abelian Varieties | 226 | 
| Zienkiewicz O.C., Taylor L.R. — The finite element method (vol. 1, The basis) | 592 | 
| Meyer C.D. — Matrix analysis and applied linear algebra | 563 | 
| Henrici P. — Applied and Computational Complex Analysis (Vol. 2) | 237, 246, 341 | 
| Abell M.L., Braselton J.P. — Mathematica by Example | 289—293 | 
| Stein E.M. — Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscilattory Integrals | 24, 276 | 
| Arbarello E., Harris J., James R. — Geometry of Algebraic Curves (Vol. 1) | 24, 250 | 
| Weinberger H.F. — First course in partial defferential equations with complex variables and transform methods | 58, 60, 66, 92—95, 108—110, 126, 318, 322, 327, 329—332, 355—361 | 
| Showalter R.E. — Monotone Operators in Banach Space and Nonlinear Partial Differential Equations | 241, 258 | 
| Melrose R. — The Atiyah-Singer index theorem (part 3) | 279, 282 | 
| Kundu P.K., Cohen I.R. — Fluid mechanics | 108—109 | 
| Maple 8. Learning guide | 263 | 
| Nayfeh A.H., Mook D.T. — Nonlinear Oscillations | 608 | 
| Frisch U. — Turbulence. The legacy of A.N. Kolmogorov | 226 | 
| Landsman N.P. — Mathematical topics between classical and quantum mechanics | 425 | 
| Chorin A., Marsden J. — A Mathematical Introduction to Fluid Mechanics | 84, 86 | 
| Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 275 | 
| Bellman R. — A brief introduction to theta functions | 16 | 
| Chaudhry M.A., Zubair S.M. — On a Class of Incomplete Gamma Functions with Applications | 444 | 
| Davies E. — Spectral Theory and Differential Operators | 99, 118, 140 | 
| Edwards H. — Advanced Calculus: A Differential Forms Approach | 333 | 
| Debnath L. — Nonlinear Partial Differential Equations for Scientists and Engineers | 7, 51 | 
| Wilmott P., Bowison S., DeWynne J. — Option Pricing: Mathematical Models and Computation | 79 | 
| Bergman S., Schiffer M. — Kernel Functions and Elliptic Differential Equations in Mathematical Physics | 2 | 
| Machel A.N., Wang K. — Qualitative Theory of Dynamical Systems: The Role of Stability Preserving Mappings | 103, 123, 344 | 
| Hogben L. — Handbook of Linear Algebra | 59—11 | 
| Dudley R.M., Fulton W. (Ed) — Real Analysis and Probability | 138, 481 | 
| Debnath L. — Linear Partial Differential Equations for Scientists and Engineers | 64, 76, 84 | 
| Strauss W.A. — Partial Differential Equations: An Introduction | 16 | 
| Falconer K.J. — Techniques in Fractal Geometry | 230—236, 241—245 | 
| Ablowitz M.J., Fokas A.S. — Complex Variables: Introduction and Applications | 303 | 
| Ivey Th.A., Landsberg J.M. — Cartan for Beginners: Differential Geometry Via Moving Frames and Exterior Differential Systems | 350 | 
| Oksendal B. — Stochastic Differential Equations: An Introduction With Applications | 178 | 
| Hijab O. — Introduction to Calculus and Classical Analysis (Undergraduate Texts in Mathematics) | 217 | 
| Harris B. — Iterated Integrals and Cycles on Algebraic Manifolds | 75 | 
| Malliaris A.G., Brock W.A. — Stochastic methods in economics and finance | 126 | 
| Shankar R. — Basic Training In Mathematics | 336 | 
| Rockmore D. — Stalking the Riemann Hypothesis: The Quest to Find the Hidden Law of Prime Numbers | 82 | 
| Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 469, 726 | 
| Zakharov V.E. — What is integrability? | 34 | 
| Friedlander S.J. (Ed), Serre D. (Ed) — Handbook of Mathematical Fluid Dynamics, Vol. 3 | 77, 226, 234, 625 | 
| Friedlander S. (Ed), Serre D. (Ed) — Handbook of Mathematical Fluid Dynamics, Vol. 4 | 162, 467, 496 | 
| Atkinson  K.E., Han W. — Theoretical Numerical Analysis: A Functional Analysis Framework | 250 | 
| Egorov Y.U. (Ed), Gamkrelidze R.V. (Ed) — Partial Differential Equations I: Foundations of the Classical Theory | 10, 37 | 
| Lang S.A. — Undergraduate Analysis | 350 | 
| Gardiner A. — Infinite Processes: Background to Analysis | 7, 267 | 
| Ramond P. — Field Theory: A Modern Primer | 116 | 
| Cantwell B.J., Crighton D.G. (Ed), Ablowitz M.J. (Ed) — Introduction to Symmetry Analysis | 18, 248 | 
| Lin C.C., Segel L.A. — Mathematics Applied to Deterministic Problems in the Natural Sciences | see Diffusion equation | 
| Ito K. — Encyclopedic Dictionary of Mathematics | 327.A, App. A, Table 15.VI | 
| Chipot M., Quittner P. — Stationary Partial Differential Equations, Vol. 1 | 288 | 
| Ablowitz M.J., Segur H. — Solitons and the Inverse Scattering Transform | 263, 154, 361—363, 375 | 
| Zauderer E. — Partial Differential Equations of Applied Mathematics | 14, 198, 206, 217, 252, 263, 289, 336, 384, 388, 407, 467, 556, 821, 823 | 
| Sokolnikoff I.S. — Mathematics of Physics and Modern Engineering | 414, 455 | 
| Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, Manifolds and Physics (vol. 2) | 175 | 
| Hilgert J., Neeb K.-H. — Lie Semigroups and their Applications | 36 | 
| Soule C. — Lectures on Arakelov Geometry | 105 | 
| Dally W.J., Poulton J.W. — Digital Systems Engineering (part 2) | 91 | 
| Strichartz R.S. — The way of analysis | 519, 555, 680, 682 | 
| Shapira Y. — Solving PDEs in C++: numerical methods in a unified object-oriented approach | 182, 216 | 
| Fulling S. — Aspects of Quantum Field Theory in Curved Spacetime | 24 | 
| Strang G. — Linear Algebra and Its Applications | 280 | 
| Chung F.R.K. — Spectral Graph Theory | 145 | 
| Rockmore D. — Stalking the Riemann Hypothesis | 82 | 
| Kalinins E.G. — Separation of Variables for Riemannian Spaces of Constant Curvature | 131 | 
| Sattinger D.H., Weaver O.L. — Lie groups and algebras with applications to physics, geometry, and mechanics | 25 | 
| Bak J., Newman D.J. — Complex Analysis | 207, 258 | 
| Courant R., Hilbert D. — Methods of Mathematical Physics, Vol. 2 | 20 — 22, 154, 188, 217 | 
| Reed M., Simon B. — Methods of Modern mathematical physics (vol. 2) Fourier analysis, self-adjointness | 242, 243, 245, 254 | 
| Guiseppe Da Prato — Stochastic equations in infinite dimensions | 124, 397 | 
| Asmar N.H. — Partial Differential Equations with fourier series and boundary value problems | 189, 411, 420, 503 | 
| Kincaid D., Cheney W. — Numerical analysis: mathematics of scientific computing | 572, 607 | 
| Rubinstein M. — Rubinstein on Derivatives | 274 | 
| Evans G.A., Blackledge J.M., Yardley P. — Analytic Methods for Partial Differential Equations | 3, 56, 130 | 
| Egorov Y.V., Shubin M.A. — Partial Differential  Equations I  (Foundations of the Classical) | 10, 37 | 
| Schulman L.S. — Techniques and applications of path integration | 55, 60, 117 | 
| Shafer G., Vovk V. — Probability and finance | 128, 130, 221 | 
| Olver P.J., Shakiban C. — Applied linear. algebra | 381 | 
| Gurtin M.E. — Thermomechanics of evolving phase boundaries in the plane | 117 | 
| Mattheij R.M.M. — Partial differential equations: modeling, analysis, computation | 24, 233, 260 | 
| Bertlmann R.A. — Anomalies in Quantum Field Theory | 274—275 | 
| Estrada R., Kanwal R.P. — A distributional approach to asymptotics theory and applications | 428 | 
| West B.J., Bologna M., Grigolini P. — Physics of Fractal Operators | 132 | 
| Quarteroni A., Saleri F. — Scientific Computing with MATLAB | 188 | 
| Buser P. — Geometry and spectra of compact riemann surfaces | 186, 188 | 
| Berman A. — Nonnegative Matrices in the Mathematical Sciences | 167 | 
| Nash C. — Differential Topology and Quantum Field Theory | 33—35 | 
| Wilmott P., Howison S., Dewynne J. — The Mathematics of Financial Derivatives : A Student Introduction | 59 | 
| Drmota M., Tichy R.F. — Sequences, Discrepancies and Applications | 410 | 
| Carl D. Meyer — Matrix Analysis and Applied Linear Algebra Book and Solutions Manual | 563 | 
| Holden H., Oksendal B. — STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS | 150 | 
| Fordy A.P., Wood J.C. (eds.) — Harmonic maps and integrable systems | 34 | 
| Simmons G.F. — Differential Equations with Applications and Historical Notes | 3, 250 | 
| Efimov A.V. — Mathematical analysis: advanced topics. Part 2. Application of some methods of mathematical and functional analysis | 108 | 
| Rosenblatt M. — Random processes | 25 | 
| Truesdell C.A., Wang C.C. — Rational Thermodynamics | 494—502, see also "Fourier — Duhamel theory" | 
| Smith P.A., Eilenberg S. — Pure and Applied Mathematics | 34 | 
| Gallavotti G. — Statistical Mechanics | 257 | 
| Harman T.L., Dabney J.B., Richert N.J. — Advanced Engineering Mathematicas with MATLAB | 717, 732 | 
| Rainville E. D. — Intermediate Course in Differential Equations | 199, 209 | 
| Abell  M.L., Braselton J.P. — Differential equations with Mathematica | 552 | 
| Duistermaat J.J, Kolk J.A.C. — Distributions: theory and applications | 45 | 
| Rauch J. — Partial differential equations | 12, 13, 16, 40, 81, §3.6, §3.7, 131, 133, 134, §4.2, §4.3, 172ff, 177ff, 196, 211ff, 215 | 
| Gloub G.H., Ortega J.M. — Scientific Computing and Differential Equations | 247ff, 253ff, 273ff, 279ff | 
| Weaver H.J. — Applications of discrete and continous Fourier analysis | 295 | 
| Gallavotti G. — Foundations of fluid mechanics | 91, 92, 104, 110, 169 | 
| John Strikwerda — Finite difference schemes and partial differential equations | 137 | 
| Dym H., McKean H.P. — Fourier Series and Integrals | 60—70, 82, 107—109 | 
| Collatz L. — The numerical treatment of differential equations | 265, 281, 284, 288, 291, 336 | 
| Roepstorf G. — Path integral approach to quantum physics | 4 | 
| Anderson R.L., Ibragimov N.H. — Lie-Bäcklund transformations in applications | 55, 104 | 
| Varga R.S. — Matrix iterative analysis | 251 | 
| Churchill R.V. — Operational mathematics | 129, 130 | 
| Adams D.R., Hedberg L.I. — Function spaces and potential theory | 182 | 
| Carroll R.W. — Mathematical physics | 13 | 
| Lang S. — Undergraduate analysis | 350 | 
| Efimov A.V. — Mathematical Analysis (Advanced Topics). Part 1. General Functional Series and Their Applications | 241 | 
| Ivey T.A., Landsberg J.M. — Cartan for beginners: differential geometry via moving frames exterior differential systems | 350 | 
| Brenner P. — Besov Spaces And Applications To Difference Methods For Initial Value Problems | 53, 68 | 
| Neuenschwander D. — Probabilistic and Statistical Methods in Cryptology: An Introduction by Selected Topics | 38 | 
| Albeverio S.A., Hoegh-Krohn R.J. — Mathematical theory of Feynman path integrals | 6 | 
| Benfatto G., Gallavotti G. — Renormalization Group | 39 | 
| Braun M. — Differential Equations and Their Applications: An Introduction to Applied Mathematics | 479, 497 | 
| Strang G. — Introduction to Applied Mathematics | 160, 247, 461, 536, 538, 571 | 
| Veselic I. — Integrated density of states and Wegner estimates for random Schrodinger operators | 26 | 
| Zeidler E. — Applied Functional Analysis: Applications to Mathematical Physics | 182 | 
| Anderson J.L. — Principles of Relativity Physics | 79 | 
| Miller W. — Symmetry and Separation of Variables | 92 | 
| Streater R.F. — Statistical Dynamics: A Stochastic Approach to Nonequilibrium Thermodynamics | 119 | 
| Bluman G.W. — Similarity Methods for Differential Equations | 146, 147, 166, 206, 295, 303 | 
| Lasota A., Mackey M.C. — Probabilistic Properties of Deterministic Systems | 176, 208 | 
| Apostol T.M. — Calculus (Volume 2): Multi-Variable Calculus and Linear Algebra with Applications | 292, Exercise 1 | 
| Salmhofer M. — Renormalization: an introduction | 68 | 
| Morel J.-M., Solimini S. — Variational Models for Image Segmentation: with seven image processing experiments (Progress in Nonlinear Differential Equations and Their Applications) | 2.1 | 
| Collatz L. — Functional analysis and numerical mathematics | 397 | 
| Jahne B., Haubecker H. — Computer vision and applications | 441 | 
| Lange H., Birkenhake C. — Complex Abelian Varieties (Grundlehren Der Mathematischen Wissenschaften) | 230 | 
| Hassani S. — Mathematical Methods: for Students of Physics and Related Fields | 543, 661—665 | 
| Bharucha-Reid A.T. — Elements of the Theory of Markov Processes and Their Applications | 139 | 
| Henry D. — Geometric Theory of Semilinear Parabolic Equations | 16, 41 | 
| Glimm J., Jaffe A. — Quantum Physics: A Functional Integral Point of View | 44, 288, see "Feynman — Kac formula" | 
| Dym H., McKean H. — Fourier Series and Integrals (Probability & Mathematical Statistics Monograph) | 60—70, 82, 107—109 | 
| Burden R.L., Faires J.D. — Numerical analysis | 623 | 
| Mattheij R.M. — Partial differential equations | 24, 233, 260 | 
| Kalton N., Saab E. — Interaction Between Functional Analysis, Harmonic Analysis, and Probability (Lecture Notes in Pure and Applied Mathematics) | 85, 90, 93 | 
| Groesen E., Molenaar J. — Continuum Modeling in the Physical Sciences (Monographs on Mathematical Modeling and Computation) | 44 | 
| Friedman A., Littman W. — Industrial Mathematics: A Course in Solving Real-World Problems | 50, 53, 56, 61 | 
| Oldham K., Spanier J. — The fractional Calculus: Theory and applications of differentiation and integration to arbitrary order | 5 | 
| Blanchard P., Bruening E. — Mathematical Methods in Physics: Distributions, Hilbert Space Operators, and Variational Method | 110, 147 | 
| Flanders H. — Differential Forms with Applications to the Physical Sciences | 90 ff | 
| Bangerth W., Rannacher R. — Adaptive Finite Element Methods for Differential Equations | 115 | 
| Sommerfeld A. — Partial Differential Equations in Physics | 34 | 
| Zorich V.A., Cooke R. — Mathematical analysis II | 302, 583 | 
| Cheney W. — Analysis for Applied Mathematics | 318ff | 
| Zorich V. — Mathematical Analysis | 302, 583 | 
| Falconer K. — Fractal geometry: mathematical foundations and applications | 303 | 
| Berman A., Plemmons R.J. — Nonnegative matrices in the mathematical sciences | 167 | 
| Lin C., Segel L. — Mathematics Applied to Deterministic Problems in the Natural Sciences | see "Diffusion equation" | 
| Lin C., Segel L. — Mathematics Applied to Deterministic Problems in the Natural Sciences | see "Diffusion equation" | 
| Rosenberg S. — The Laplacian on a Riemannian manifold | 5, 27 | 
| Lin C., Segel L. — Mathematics applied to deterministic problems in the natural sciences | see "Diffusion equation" | 
| Gripenberg G., Londen S.O., Staffans O. — Volterra integral and functional equations | 1 | 
| Vretblad A. — Fourier Analysis and Its Applications (Graduate Texts in Mathematics) | 1, 9, 137, 139, 182, 223 |