Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Nagel R. — One-parameter semigroups of positive operators | 13 |
Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 216, 235, 415, 423 |
Taylor M.E. — Partial Differential Equations. Qualitative studies of linear equations (vol. 2) | 88, 95, 265, 303 |
Heinbockel J.H. — Introduction to tensor calculus and continuum mechanics | 316 |
Abell M., Braselton J. — Differential Equations with Mathematica | 552 |
Grubb G. — Functional Calculus of Pseudo-Differential Boundary Problems | 1.5.1, 4.1, 4.2 |
Hunter J.K., Nachtergaele B. — Applied Analysis | 69, 161 |
Fritz J. — Lectures on advanced numerical analysis | 106 |
Berline N., Getzler E., Vergne M. — Heat Kernels and Dirac Operators | 75 |
Apostol T.M. — Calculus (vol 2) | 292 (Exercise 1) |
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 327.A, App. A, Table 15.VI |
Berger M. — A Panoramic View of Riemannian Geometry | 79, 100—104, 405 |
Falconer K. — Fractal Geometry: Mathematical Foundations and Applications | 303 |
Evans L.C. — Partial Differential Equations | 4, 9, 44—65, 172 |
Acheson David — From calculus to chaos | 99 |
Olver P.J. — Equivalence, Invariants and Symmetry | 182, 185, 210 |
Neta B. — Numerical solution of partial differential equations | 4 |
Golub G.H., Ortega J.M. — Scientific Computing and Differential Equations : An Introduction to Numerical Methods | 247ff, 253ff, 273ff, 279ff |
Mathews J.H., Fink K.D. — Numerical Methods Using MATLAB | 515 |
Donaldson K., Kronheimer P.B. — Geometry of Four-Manifolds | 217, 221 |
Birkenhake C., Lange H. — Complex Abelian Varieties | 226 |
Zienkiewicz O.C., Taylor L.R. — The finite element method (vol. 1, The basis) | 592 |
Meyer C.D. — Matrix analysis and applied linear algebra | 563 |
Henrici P. — Applied and Computational Complex Analysis (Vol. 2) | 237, 246, 341 |
Abell M.L., Braselton J.P. — Mathematica by Example | 289—293 |
Stein E.M. — Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscilattory Integrals | 24, 276 |
Arbarello E., Harris J., James R. — Geometry of Algebraic Curves (Vol. 1) | 24, 250 |
Weinberger H.F. — First course in partial defferential equations with complex variables and transform methods | 58, 60, 66, 92—95, 108—110, 126, 318, 322, 327, 329—332, 355—361 |
Showalter R.E. — Monotone Operators in Banach Space and Nonlinear Partial Differential Equations | 241, 258 |
Melrose R. — The Atiyah-Singer index theorem (part 3) | 279, 282 |
Kundu P.K., Cohen I.R. — Fluid mechanics | 108—109 |
Maple 8. Learning guide | 263 |
Nayfeh A.H., Mook D.T. — Nonlinear Oscillations | 608 |
Frisch U. — Turbulence. The legacy of A.N. Kolmogorov | 226 |
Landsman N.P. — Mathematical topics between classical and quantum mechanics | 425 |
Chorin A., Marsden J. — A Mathematical Introduction to Fluid Mechanics | 84, 86 |
Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 275 |
Bellman R. — A brief introduction to theta functions | 16 |
Chaudhry M.A., Zubair S.M. — On a Class of Incomplete Gamma Functions with Applications | 444 |
Davies E. — Spectral Theory and Differential Operators | 99, 118, 140 |
Edwards H. — Advanced Calculus: A Differential Forms Approach | 333 |
Debnath L. — Nonlinear Partial Differential Equations for Scientists and Engineers | 7, 51 |
Wilmott P., Bowison S., DeWynne J. — Option Pricing: Mathematical Models and Computation | 79 |
Bergman S., Schiffer M. — Kernel Functions and Elliptic Differential Equations in Mathematical Physics | 2 |
Machel A.N., Wang K. — Qualitative Theory of Dynamical Systems: The Role of Stability Preserving Mappings | 103, 123, 344 |
Hogben L. — Handbook of Linear Algebra | 59—11 |
Dudley R.M., Fulton W. (Ed) — Real Analysis and Probability | 138, 481 |
Debnath L. — Linear Partial Differential Equations for Scientists and Engineers | 64, 76, 84 |
Strauss W.A. — Partial Differential Equations: An Introduction | 16 |
Falconer K.J. — Techniques in Fractal Geometry | 230—236, 241—245 |
Ablowitz M.J., Fokas A.S. — Complex Variables: Introduction and Applications | 303 |
Ivey Th.A., Landsberg J.M. — Cartan for Beginners: Differential Geometry Via Moving Frames and Exterior Differential Systems | 350 |
Oksendal B. — Stochastic Differential Equations: An Introduction With Applications | 178 |
Hijab O. — Introduction to Calculus and Classical Analysis (Undergraduate Texts in Mathematics) | 217 |
Harris B. — Iterated Integrals and Cycles on Algebraic Manifolds | 75 |
Malliaris A.G., Brock W.A. — Stochastic methods in economics and finance | 126 |
Shankar R. — Basic Training In Mathematics | 336 |
Rockmore D. — Stalking the Riemann Hypothesis: The Quest to Find the Hidden Law of Prime Numbers | 82 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 469, 726 |
Zakharov V.E. — What is integrability? | 34 |
Friedlander S.J. (Ed), Serre D. (Ed) — Handbook of Mathematical Fluid Dynamics, Vol. 3 | 77, 226, 234, 625 |
Friedlander S. (Ed), Serre D. (Ed) — Handbook of Mathematical Fluid Dynamics, Vol. 4 | 162, 467, 496 |
Atkinson K.E., Han W. — Theoretical Numerical Analysis: A Functional Analysis Framework | 250 |
Egorov Y.U. (Ed), Gamkrelidze R.V. (Ed) — Partial Differential Equations I: Foundations of the Classical Theory | 10, 37 |
Lang S.A. — Undergraduate Analysis | 350 |
Gardiner A. — Infinite Processes: Background to Analysis | 7, 267 |
Ramond P. — Field Theory: A Modern Primer | 116 |
Cantwell B.J., Crighton D.G. (Ed), Ablowitz M.J. (Ed) — Introduction to Symmetry Analysis | 18, 248 |
Lin C.C., Segel L.A. — Mathematics Applied to Deterministic Problems in the Natural Sciences | see Diffusion equation |
Ito K. — Encyclopedic Dictionary of Mathematics | 327.A, App. A, Table 15.VI |
Chipot M., Quittner P. — Stationary Partial Differential Equations, Vol. 1 | 288 |
Ablowitz M.J., Segur H. — Solitons and the Inverse Scattering Transform | 263, 154, 361—363, 375 |
Zauderer E. — Partial Differential Equations of Applied Mathematics | 14, 198, 206, 217, 252, 263, 289, 336, 384, 388, 407, 467, 556, 821, 823 |
Sokolnikoff I.S. — Mathematics of Physics and Modern Engineering | 414, 455 |
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, Manifolds and Physics (vol. 2) | 175 |
Hilgert J., Neeb K.-H. — Lie Semigroups and their Applications | 36 |
Soule C. — Lectures on Arakelov Geometry | 105 |
Dally W.J., Poulton J.W. — Digital Systems Engineering (part 2) | 91 |
Strichartz R.S. — The way of analysis | 519, 555, 680, 682 |
Shapira Y. — Solving PDEs in C++: numerical methods in a unified object-oriented approach | 182, 216 |
Fulling S. — Aspects of Quantum Field Theory in Curved Spacetime | 24 |
Strang G. — Linear Algebra and Its Applications | 280 |
Chung F.R.K. — Spectral Graph Theory | 145 |
Rockmore D. — Stalking the Riemann Hypothesis | 82 |
Kalinins E.G. — Separation of Variables for Riemannian Spaces of Constant Curvature | 131 |
Sattinger D.H., Weaver O.L. — Lie groups and algebras with applications to physics, geometry, and mechanics | 25 |
Bak J., Newman D.J. — Complex Analysis | 207, 258 |
Courant R., Hilbert D. — Methods of Mathematical Physics, Vol. 2 | 20 — 22, 154, 188, 217 |
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 2) Fourier analysis, self-adjointness | 242, 243, 245, 254 |
Guiseppe Da Prato — Stochastic equations in infinite dimensions | 124, 397 |
Asmar N.H. — Partial Differential Equations with fourier series and boundary value problems | 189, 411, 420, 503 |
Kincaid D., Cheney W. — Numerical analysis: mathematics of scientific computing | 572, 607 |
Rubinstein M. — Rubinstein on Derivatives | 274 |
Evans G.A., Blackledge J.M., Yardley P. — Analytic Methods for Partial Differential Equations | 3, 56, 130 |
Egorov Y.V., Shubin M.A. — Partial Differential Equations I (Foundations of the Classical) | 10, 37 |
Schulman L.S. — Techniques and applications of path integration | 55, 60, 117 |
Shafer G., Vovk V. — Probability and finance | 128, 130, 221 |
Olver P.J., Shakiban C. — Applied linear. algebra | 381 |
Gurtin M.E. — Thermomechanics of evolving phase boundaries in the plane | 117 |
Mattheij R.M.M. — Partial differential equations: modeling, analysis, computation | 24, 233, 260 |
Bertlmann R.A. — Anomalies in Quantum Field Theory | 274—275 |
Estrada R., Kanwal R.P. — A distributional approach to asymptotics theory and applications | 428 |
West B.J., Bologna M., Grigolini P. — Physics of Fractal Operators | 132 |
Quarteroni A., Saleri F. — Scientific Computing with MATLAB | 188 |
Buser P. — Geometry and spectra of compact riemann surfaces | 186, 188 |
Berman A. — Nonnegative Matrices in the Mathematical Sciences | 167 |
Nash C. — Differential Topology and Quantum Field Theory | 33—35 |
Wilmott P., Howison S., Dewynne J. — The Mathematics of Financial Derivatives : A Student Introduction | 59 |
Drmota M., Tichy R.F. — Sequences, Discrepancies and Applications | 410 |
Carl D. Meyer — Matrix Analysis and Applied Linear Algebra Book and Solutions Manual | 563 |
Holden H., Oksendal B. — STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS | 150 |
Fordy A.P., Wood J.C. (eds.) — Harmonic maps and integrable systems | 34 |
Simmons G.F. — Differential Equations with Applications and Historical Notes | 3, 250 |
Efimov A.V. — Mathematical analysis: advanced topics. Part 2. Application of some methods of mathematical and functional analysis | 108 |
Rosenblatt M. — Random processes | 25 |
Truesdell C.A., Wang C.C. — Rational Thermodynamics | 494—502, see also "Fourier — Duhamel theory" |
Smith P.A., Eilenberg S. — Pure and Applied Mathematics | 34 |
Gallavotti G. — Statistical Mechanics | 257 |
Harman T.L., Dabney J.B., Richert N.J. — Advanced Engineering Mathematicas with MATLAB | 717, 732 |
Rainville E. D. — Intermediate Course in Differential Equations | 199, 209 |
Abell M.L., Braselton J.P. — Differential equations with Mathematica | 552 |
Duistermaat J.J, Kolk J.A.C. — Distributions: theory and applications | 45 |
Rauch J. — Partial differential equations | 12, 13, 16, 40, 81, §3.6, §3.7, 131, 133, 134, §4.2, §4.3, 172ff, 177ff, 196, 211ff, 215 |
Gloub G.H., Ortega J.M. — Scientific Computing and Differential Equations | 247ff, 253ff, 273ff, 279ff |
Weaver H.J. — Applications of discrete and continous Fourier analysis | 295 |
Gallavotti G. — Foundations of fluid mechanics | 91, 92, 104, 110, 169 |
John Strikwerda — Finite difference schemes and partial differential equations | 137 |
Dym H., McKean H.P. — Fourier Series and Integrals | 60—70, 82, 107—109 |
Collatz L. — The numerical treatment of differential equations | 265, 281, 284, 288, 291, 336 |
Roepstorf G. — Path integral approach to quantum physics | 4 |
Anderson R.L., Ibragimov N.H. — Lie-Bäcklund transformations in applications | 55, 104 |
Varga R.S. — Matrix iterative analysis | 251 |
Churchill R.V. — Operational mathematics | 129, 130 |
Adams D.R., Hedberg L.I. — Function spaces and potential theory | 182 |
Carroll R.W. — Mathematical physics | 13 |
Lang S. — Undergraduate analysis | 350 |
Efimov A.V. — Mathematical Analysis (Advanced Topics). Part 1. General Functional Series and Their Applications | 241 |
Ivey T.A., Landsberg J.M. — Cartan for beginners: differential geometry via moving frames exterior differential systems | 350 |
Brenner P. — Besov Spaces And Applications To Difference Methods For Initial Value Problems | 53, 68 |
Neuenschwander D. — Probabilistic and Statistical Methods in Cryptology: An Introduction by Selected Topics | 38 |
Albeverio S.A., Hoegh-Krohn R.J. — Mathematical theory of Feynman path integrals | 6 |
Benfatto G., Gallavotti G. — Renormalization Group | 39 |
Braun M. — Differential Equations and Their Applications: An Introduction to Applied Mathematics | 479, 497 |
Strang G. — Introduction to Applied Mathematics | 160, 247, 461, 536, 538, 571 |
Veselic I. — Integrated density of states and Wegner estimates for random Schrodinger operators | 26 |
Zeidler E. — Applied Functional Analysis: Applications to Mathematical Physics | 182 |
Anderson J.L. — Principles of Relativity Physics | 79 |
Miller W. — Symmetry and Separation of Variables | 92 |
Streater R.F. — Statistical Dynamics: A Stochastic Approach to Nonequilibrium Thermodynamics | 119 |
Bluman G.W. — Similarity Methods for Differential Equations | 146, 147, 166, 206, 295, 303 |
Lasota A., Mackey M.C. — Probabilistic Properties of Deterministic Systems | 176, 208 |
Apostol T.M. — Calculus (Volume 2): Multi-Variable Calculus and Linear Algebra with Applications | 292, Exercise 1 |
Salmhofer M. — Renormalization: an introduction | 68 |
Morel J.-M., Solimini S. — Variational Models for Image Segmentation: with seven image processing experiments (Progress in Nonlinear Differential Equations and Their Applications) | 2.1 |
Collatz L. — Functional analysis and numerical mathematics | 397 |
Jahne B., Haubecker H. — Computer vision and applications | 441 |
Lange H., Birkenhake C. — Complex Abelian Varieties (Grundlehren Der Mathematischen Wissenschaften) | 230 |
Hassani S. — Mathematical Methods: for Students of Physics and Related Fields | 543, 661—665 |
Bharucha-Reid A.T. — Elements of the Theory of Markov Processes and Their Applications | 139 |
Henry D. — Geometric Theory of Semilinear Parabolic Equations | 16, 41 |
Glimm J., Jaffe A. — Quantum Physics: A Functional Integral Point of View | 44, 288, see "Feynman — Kac formula" |
Dym H., McKean H. — Fourier Series and Integrals (Probability & Mathematical Statistics Monograph) | 60—70, 82, 107—109 |
Burden R.L., Faires J.D. — Numerical analysis | 623 |
Mattheij R.M. — Partial differential equations | 24, 233, 260 |
Kalton N., Saab E. — Interaction Between Functional Analysis, Harmonic Analysis, and Probability (Lecture Notes in Pure and Applied Mathematics) | 85, 90, 93 |
Groesen E., Molenaar J. — Continuum Modeling in the Physical Sciences (Monographs on Mathematical Modeling and Computation) | 44 |
Friedman A., Littman W. — Industrial Mathematics: A Course in Solving Real-World Problems | 50, 53, 56, 61 |
Oldham K., Spanier J. — The fractional Calculus: Theory and applications of differentiation and integration to arbitrary order | 5 |
Blanchard P., Bruening E. — Mathematical Methods in Physics: Distributions, Hilbert Space Operators, and Variational Method | 110, 147 |
Flanders H. — Differential Forms with Applications to the Physical Sciences | 90 ff |
Bangerth W., Rannacher R. — Adaptive Finite Element Methods for Differential Equations | 115 |
Sommerfeld A. — Partial Differential Equations in Physics | 34 |
Zorich V.A., Cooke R. — Mathematical analysis II | 302, 583 |
Cheney W. — Analysis for Applied Mathematics | 318ff |
Zorich V. — Mathematical Analysis | 302, 583 |
Falconer K. — Fractal geometry: mathematical foundations and applications | 303 |
Berman A., Plemmons R.J. — Nonnegative matrices in the mathematical sciences | 167 |
Lin C., Segel L. — Mathematics Applied to Deterministic Problems in the Natural Sciences | see "Diffusion equation" |
Lin C., Segel L. — Mathematics Applied to Deterministic Problems in the Natural Sciences | see "Diffusion equation" |
Rosenberg S. — The Laplacian on a Riemannian manifold | 5, 27 |
Lin C., Segel L. — Mathematics applied to deterministic problems in the natural sciences | see "Diffusion equation" |
Gripenberg G., Londen S.O., Staffans O. — Volterra integral and functional equations | 1 |
Vretblad A. — Fourier Analysis and Its Applications (Graduate Texts in Mathematics) | 1, 9, 137, 139, 182, 223 |