Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Efimov A.V. — Mathematical Analysis (Advanced Topics). Part 1. General Functional Series and Their Applications
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Mathematical Analysis (Advanced Topics). Part 1. General Functional Series and Their Applications
Àâòîð: Efimov A.V.
Àííîòàöèÿ: In the recent years mathematics has become a commonplace tool not only in disciplines such as mechanics, physics, chemistry, and astronomy, but also in ones such as economics, biology, medicine, and linguistics. This invasion of mathematics into every field of scientific and practical activity proceeds ever more intensely. We all witness the increasing of mathematization of sciences, a process aided by the rapid development of electronic computers. In order for most technical, economic, or biological problems to be solved, it is first necessary that they be "translated" into mathematical language, whence they can be solved. It is obvious that the most difficult link in this chain is the "translation" of a problem into mathematical language. This is because the correct mathematical statement of an engineering or other problem requires that the researcher possess both a knowledge of the science which gave birth to the problem, and a deep understanding of mathematics...
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñåðèÿ: Ñäåëàíî â õîëëå
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1985
Êîëè÷åñòâî ñòðàíèö: 360
Äîáàâëåíà â êàòàëîã: 12.10.2013
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Acceleration oj series convergence 146—152
Algorithm of fast Fourier’s transform 257—263
Analytic continuation 137
Argument 22
Argument of a complex number 11
Argument of a derivative 36
Argument of a derivative, geometrical meaning of 36
Argument of the product of two complex numbers 13
Argument of the quotient of two complex numbers 13
Basic frequency 203
Boundary correspondence principle 41
Cauchy — Riemann conditions 30
Cauchy’s criterion 81 103
Cauchy’s integral and its application 69—78
Circle of convergence 120
Coefficient(s), Fourier 181
Coefficient(s), Fourier — Walsh 182
Complex form of Fourier series 201
Complex number(s) 9
Complex number(s) algebraic form of 10
Complex number(s) argument of 11
Complex number(s) conjugate 10
Complex number(s) difference of 11
Complex number(s) equal 10
Complex number(s) exponential form of 12
Complex number(s) imaginary part of 9
Complex number(s) modulus of 11
Complex number(s) natural logarithm of 28
Complex number(s) nth root of 14
Complex number(s) principal value of 12
Complex number(s) quotient of 11
Complex number(s) real part of 9
Complex number(s) sum of 10
Complex number(s) trigonometric form of 12
Convolution of two functions 309
Curve(s), piecewise smooth 17
Curve(s), smooth 17
Differential equation(s), Bessel’s 156
Differential equation(s), general solution of 159—160
Differential equation(s), integration of 153
Differential equation(s), Legendre’s 173
Differential equation(s), linear 154
Domain(s) of values of a function 22
Domain(s), closed 16
Domain(s), multiply connected 17
Domain(s), simply connected 17
Domain(s), singly connected 17
Equation(s) heat 241
Equation(s) heat-conduction 330—335
Equation(s) of a long line 336
Equation(s) of diffusion in an impenetrable tube 332—335
Equation(s) of telegraphy 336
Equation(s) telegrapher’s 335—336
Forced vibrations of a fixed string 234
Formula (s), Cauchy — Hadamard 121
Formula (s), Cauchy’s integral 69
Formula (s), Christoffel — Darboux 179
Formula (s), De Moivre 14
Formula (s), Euler’s 12
Formula (s), Green’s 64—65
Formula (s), Rodrigues 174
Fourier’s double series 211—216
Free vibrations of a string 230—234
Function(s) Bessel’s 158—160
Function(s) binomial 129
Function(s) derivative of 29
Function(s) differentiation of 29—38
Function(s) Dirac 252
Function(s) elementary 27
Function(s) exponential 127
Function(s) geometrical meaning of 23
Function(s) limit of 25—26
Function(s) linear 42
Function(s) linear-fractional 44—47
Function(s) logarithmic 28 55 130
Function(s) many-valued 22
Function(s) many-valued, branch points of 25
Function(s) one-sheeted 25
Function(s) one-valued 22
Function(s) original 297
Function(s) orthogonal systems of 162
Function(s) piecewise continuous 192
Function(s) power 48
Function(s) single-valued 22
Function(s) spectral 224
Function(s) trigonometric 57 128
Function(s) uniformly continuous in a domain 27
Function(s) value of 22
Function(s) Zhukovsky’s 50
Function(s) Zhukovsky’s inverse of 54
Function(s), of a complex variable 22
Function(s), of a complex variable, analytic in a domain 29
Function(s), of a complex variable, analytic in a domain, properties of 34—36
Geometrical meaning of a function of a complex variable 23
Geometrical meaning of the argument of a derivative 36
Geometrical meaning of the modulus of a derivative 38
Heat conduction 241
Heat conduction in a homogeneous cylinder 245
Heat conduction in an infinite rod 241
Heat equation 241
Heat-conduction equation 330—335
Inequality, Bessel’s 185
Inequality, Buniakovski — Cauchy 179
Inequality, Schwarz’s 179
Integral(s) Dirichlet 194
Integral(s) Duhamel’s 311—313
Integral(s) of the Cauchy type 76—78
Integral(s) with respect to a complex variable 61—69
Integral(s), Fourier’s 216—222
Integral(s), Fourier’s in complex form 220
Integral(s), Fourier’s in real form 221
Integral(s), Fourier’s spectral characteristics of 223
Integral(s), indefinite, in a complex domain 66
Integral(s), Mellin's 319—325
Integration of differential equations 153
Inverse Laplace transformation 314—319
inversion 42
Jordan’s lemma 282
Kernel, Dirichlet’s 194 215
Lemma(s), Jordan’s 282
Lemma(s), Riemann — Lebesgue 192
Limit of a number sequence 18
Linearity 301
Logarithmic derivative 288
Mapping(s), conformal at a point 38
Mapping(s), conformal in a domain 39
Mapping(s), determined by linear and linear-fractional functions 42—47
Mapping(s), linear-fractional 44
Mapping(s), properties of 39—41
Mapping(s), superposition of 23
Maximum Modulus Principle 72—74
Method(s), artificial, for expanding functions into Taylor’s series 131
Method(s), Euler’s 150
Method(s), Maliev’s 207—211
Method(s), operational 297
Method(s), Rummer’s 147
Modulus of derivative 38
Modulus of derivative, geometrical meaning of 38
Modulus of the product of two complex numbers 13
Numerical series 79
Orthogonal expansions 180—182
Point(s), boundary, of a domain 16
Point(s), essential singular 268
Point(s), interior, of a domain 16
Point(s), regular 139
Point(s), removable singular 268
Point(s), singular 139
Polynomial(s), Chebyshev 175—177
Polynomial(s), Jacobi 177—179
Polynomial(s), Legendre’s 173—174
Polynomial(s), orthogonal 173—179
Polynomial(s), ultraspherical 179
primitive 68
Properties of analytic functions 72—74
Properties of discrete Fourier’s transformations 249—257
Quotient of two complex numbers 11
R-neighbourhood of the point at infinity 15
Residue(s) 275—279
Residue(s) definition of 275—277
Residue(s) evaluation of 255—277
Residue(s) logarithmic 288
Residue(s) of an analytic function 275
Riemann surfaces 138
Series, absolute convergence of 85
Series, alternating 99
Series, application of 142—146
Series, binomial 120
Series, conditional convergence of 85
Series, convergent 79
Series, convergent, properties of 82—85
Series, Fourier 181
Series, Fourier of nonperiodic functions 203
Series, Fourier spectral characteristics of 223
Series, Fourier spectral density of 224
Series, Fourier trigonometric 182 189—192
Series, Fourier — Bessel 182
Series, Fourier, complex form of 201—202
Series, general functional 103—110
Series, harmonic 81
Series, Laurent’s 264
Series, Laurent’s numerical 79
Series, Laurent’s orthogonal 179—188
Series, Laurent’s partial sums of 79
Series, Laurent’s principal part of 265
Series, Laurent’s regular part of 265
Series, Laurent’s sum of 79
Series, Laurent’s Taylor’s 124
Series, uniform convergence of 106
Series, uniform convergence of Cauchy’s criterion for 106
Series, uniform convergence of conditions of 107—110
Series, uniform convergence of Weierstrass’ test for 107— 108
Series, with arbitrary terms 100
Singularity, essential 268
Singularity, isolated 268
Singularity, removable 268
Spectrum 224 228
Spectrum, amplitude 224 228
Spectrum, continuous 252
Spectrum, discrete 252
Spectrum, phase 224 228
Sturm — Liouville problem 168
Sturm — Liouville problem, eigenfunction of 171
Sturm — Liouville problem, eigenvalue of 171
System(s) of Bessel functions 164
System(s) of eigenfunctions of Sturm — Liouville problem 168
System(s) of Raaemacher functions,[ 166
System(s) of Walsh functions 167
System(s) orthogonal 162
System(s) trigonometric 163
Test(s), Cauchy’s 93
Test(s), Cauchy’s integral 95—98
Test(s), comparison 89
Test(s), Dirichlet — Abel 100
Test(s), D’Alembert’s 91
Test(s), Leibniz 99
Test(s), limit comparison 90
Test(s), necessary, for convergence of a series 81
Test(s), second Weierstrass’, for uniform convergence 109
Test(s), sufficient, for absolute convergence of numerical series 89—98
Test(s), Weierstrass’, for uniform convergence 107
Theorem(s) on a logarithmic residue 288
Theorem(s) on convergence of Fourier series 195—199
Theorem(s) on uniform convergence 198
Theorem(s) on uniqueness of analytic functions 134
Theorem(s), Borel s 310
Theorem(s), Cantor’s 27
Theorem(s), Cauchy’s 64
Theorem(s), Cauchy’s integral 65
Theorem(s), Laurent’s 266
Theorem(s), Liouville’s 78
Theorem(s), mean-value 72
Theorem(s), Morera’s 78
Theorem(s), power series 122—123
Theorem(s), residue 278
Theorem(s), Riemann mapping 41
Theorem(s), Riemann’s 88
Theorem(s), RouchS’s 292
Theorem(s), Sochozky’s 271
Theorem(s), Taylor’s 124
Theorem(s), uniqueness 136 238
Transform(s) 298
Transform(s) of some elementary functions 300—301
Transform(s), differentiation of 306
Transform(s), Fourier’s convolution of 250
Transform(s), Fourier’s cosine 221
Transform(s), Fourier’s fast 249
Transform(s), Fourier’s in complex form 222
Transform(s), Fourier’s in real form 221
Transform(s), Fourier’s sine 221
Transform(s), integration of 307
Transform(s), Laplace 297
Transform(s), properties of 301—309
Transformation(s), Abel’s 100
Transformation(s), Fourier’s 200
Transformation(s), Fourier’s discrete 249
Transformation(s), Heaviside 299
Two-sheeted Riemann surface 25
Unit imaginary number 9 10
Variable, dependent 22
Variable, independent 22
Weierstrass’ test for uniform convergence 107—108
Zhukovsky’s function 50
Ðåêëàìà