Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Efimov A.V. — Mathematical Analysis (Advanced Topics). Part 1. General Functional Series and Their Applications
Efimov A.V. — Mathematical Analysis (Advanced Topics). Part 1. General Functional Series and Their Applications



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Mathematical Analysis (Advanced Topics). Part 1. General Functional Series and Their Applications

Àâòîð: Efimov A.V.

Àííîòàöèÿ:

In the recent years mathematics has become a commonplace tool not only in disciplines such as mechanics, physics, chemistry, and astronomy, but also in ones such as economics, biology, medicine, and linguistics. This invasion of mathematics into every field of scientific and practical activity proceeds ever more intensely. We all witness the increasing of mathematization of sciences, a process aided by the rapid development of electronic computers. In order for most technical, economic, or biological problems to be solved, it is first necessary that they be "translated" into mathematical language, whence they can be solved. It is obvious that the most difficult link in this chain is the "translation" of a problem into mathematical language. This is because the correct mathematical statement of an engineering or other problem requires that the researcher possess both a knowledge of the science which gave birth to the problem, and a deep understanding of mathematics...


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñåðèÿ: Ñäåëàíî â õîëëå

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1985

Êîëè÷åñòâî ñòðàíèö: 360

Äîáàâëåíà â êàòàëîã: 12.10.2013

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Acceleration oj series convergence      146—152
Algorithm of fast Fourier’s transform      257—263
Analytic continuation      137
Argument      22
Argument of a complex number      11
Argument of a derivative      36
Argument of a derivative, geometrical meaning of      36
Argument of the product of two complex numbers      13
Argument of the quotient of two complex numbers      13
Basic frequency      203
Boundary correspondence principle      41
Cauchy — Riemann conditions      30
Cauchy’s criterion      81 103
Cauchy’s integral and its application      69—78
Circle of convergence      120
Coefficient(s), Fourier      181
Coefficient(s), Fourier — Walsh      182
Complex form of Fourier series      201
Complex number(s)      9
Complex number(s) algebraic form of      10
Complex number(s) argument of      11
Complex number(s) conjugate      10
Complex number(s) difference of      11
Complex number(s) equal      10
Complex number(s) exponential form of      12
Complex number(s) imaginary part of      9
Complex number(s) modulus of      11
Complex number(s) natural logarithm of      28
Complex number(s) nth root of      14
Complex number(s) principal value of      12
Complex number(s) quotient of      11
Complex number(s) real part of      9
Complex number(s) sum of      10
Complex number(s) trigonometric form of      12
Convolution of two functions      309
Curve(s), piecewise smooth      17
Curve(s), smooth      17
Differential equation(s), Bessel’s      156
Differential equation(s), general solution of      159—160
Differential equation(s), integration of      153
Differential equation(s), Legendre’s      173
Differential equation(s), linear      154
Domain(s) of values of a function      22
Domain(s), closed      16
Domain(s), multiply connected      17
Domain(s), simply connected      17
Domain(s), singly connected      17
Equation(s) heat      241
Equation(s) heat-conduction      330—335
Equation(s) of a long line      336
Equation(s) of diffusion in an impenetrable tube      332—335
Equation(s) of telegraphy      336
Equation(s) telegrapher’s      335—336
Forced vibrations of a fixed string      234
Formula (s), Cauchy — Hadamard      121
Formula (s), Cauchy’s integral      69
Formula (s), Christoffel — Darboux      179
Formula (s), De Moivre      14
Formula (s), Euler’s      12
Formula (s), Green’s      64—65
Formula (s), Rodrigues      174
Fourier’s double series      211—216
Free vibrations of a string      230—234
Function(s) Bessel’s      158—160
Function(s) binomial      129
Function(s) derivative of      29
Function(s) differentiation of      29—38
Function(s) Dirac $\delta -$      252
Function(s) elementary      27
Function(s) exponential      127
Function(s) geometrical meaning of      23
Function(s) limit of      25—26
Function(s) linear      42
Function(s) linear-fractional      44—47
Function(s) logarithmic      28 55 130
Function(s) many-valued      22
Function(s) many-valued, branch points of      25
Function(s) one-sheeted      25
Function(s) one-valued      22
Function(s) original      297
Function(s) orthogonal systems of      162
Function(s) piecewise continuous      192
Function(s) power      48
Function(s) single-valued      22
Function(s) spectral      224
Function(s) trigonometric      57 128
Function(s) uniformly continuous in a domain      27
Function(s) value of      22
Function(s) Zhukovsky’s      50
Function(s) Zhukovsky’s inverse of      54
Function(s), of a complex variable      22
Function(s), of a complex variable, analytic in a domain      29
Function(s), of a complex variable, analytic in a domain, properties of      34—36
Geometrical meaning of a function of a complex variable      23
Geometrical meaning of the argument of a derivative      36
Geometrical meaning of the modulus of a derivative      38
Heat conduction      241
Heat conduction in a homogeneous cylinder      245
Heat conduction in an infinite rod      241
Heat equation      241
Heat-conduction equation      330—335
Inequality, Bessel’s      185
Inequality, Buniakovski — Cauchy      179
Inequality, Schwarz’s      179
Integral(s) Dirichlet      194
Integral(s) Duhamel’s      311—313
Integral(s) of the Cauchy type      76—78
Integral(s) with respect to a complex variable      61—69
Integral(s), Fourier’s      216—222
Integral(s), Fourier’s in complex form      220
Integral(s), Fourier’s in real form      221
Integral(s), Fourier’s spectral characteristics of      223
Integral(s), indefinite, in a complex domain      66
Integral(s), Mellin's      319—325
Integration of differential equations      153
Inverse Laplace transformation      314—319
inversion      42
Jordan’s lemma      282
Kernel, Dirichlet’s      194 215
Lemma(s), Jordan’s      282
Lemma(s), Riemann — Lebesgue      192
Limit of a number sequence      18
Linearity      301
Logarithmic derivative      288
Mapping(s), conformal at a point      38
Mapping(s), conformal in a domain      39
Mapping(s), determined by linear and linear-fractional functions      42—47
Mapping(s), linear-fractional      44
Mapping(s), properties of      39—41
Mapping(s), superposition of      23
Maximum Modulus Principle      72—74
Method(s), artificial, for expanding functions into Taylor’s series      131
Method(s), Euler’s      150
Method(s), Maliev’s      207—211
Method(s), operational      297
Method(s), Rummer’s      147
Modulus of derivative      38
Modulus of derivative, geometrical meaning of      38
Modulus of the product of two complex numbers      13
Numerical series      79
Orthogonal expansions      180—182
Point(s), boundary, of a domain      16
Point(s), essential singular      268
Point(s), interior, of a domain      16
Point(s), regular      139
Point(s), removable singular      268
Point(s), singular      139
Polynomial(s), Chebyshev      175—177
Polynomial(s), Jacobi      177—179
Polynomial(s), Legendre’s      173—174
Polynomial(s), orthogonal      173—179
Polynomial(s), ultraspherical      179
primitive      68
Properties of analytic functions      72—74
Properties of discrete Fourier’s transformations      249—257
Quotient of two complex numbers      11
R-neighbourhood of the point at infinity      15
Residue(s)      275—279
Residue(s) definition of      275—277
Residue(s) evaluation of      255—277
Residue(s) logarithmic      288
Residue(s) of an analytic function      275
Riemann surfaces      138
Series, absolute convergence of      85
Series, alternating      99
Series, application of      142—146
Series, binomial      120
Series, conditional convergence of      85
Series, convergent      79
Series, convergent, properties of      82—85
Series, Fourier      181
Series, Fourier of nonperiodic functions      203
Series, Fourier spectral characteristics of      223
Series, Fourier spectral density of      224
Series, Fourier trigonometric      182 189—192
Series, Fourier — Bessel      182
Series, Fourier, complex form of      201—202
Series, general functional      103—110
Series, harmonic      81
Series, Laurent’s      264
Series, Laurent’s numerical      79
Series, Laurent’s orthogonal      179—188
Series, Laurent’s partial sums of      79
Series, Laurent’s principal part of      265
Series, Laurent’s regular part of      265
Series, Laurent’s sum of      79
Series, Laurent’s Taylor’s      124
Series, uniform convergence of      106
Series, uniform convergence of Cauchy’s criterion for      106
Series, uniform convergence of conditions of      107—110
Series, uniform convergence of Weierstrass’ test for      107— 108
Series, with arbitrary terms      100
Singularity, essential      268
Singularity, isolated      268
Singularity, removable      268
Spectrum      224 228
Spectrum, amplitude      224 228
Spectrum, continuous      252
Spectrum, discrete      252
Spectrum, phase      224 228
Sturm — Liouville problem      168
Sturm — Liouville problem, eigenfunction of      171
Sturm — Liouville problem, eigenvalue of      171
System(s) of Bessel functions      164
System(s) of eigenfunctions of Sturm — Liouville problem      168
System(s) of Raaemacher functions,[      166
System(s) of Walsh functions      167
System(s) orthogonal      162
System(s) trigonometric      163
Test(s), Cauchy’s      93
Test(s), Cauchy’s integral      95—98
Test(s), comparison      89
Test(s), Dirichlet — Abel      100
Test(s), D’Alembert’s      91
Test(s), Leibniz      99
Test(s), limit comparison      90
Test(s), necessary, for convergence of a series      81
Test(s), second Weierstrass’, for uniform convergence      109
Test(s), sufficient, for absolute convergence of numerical series      89—98
Test(s), Weierstrass’, for uniform convergence      107
Theorem(s) on a logarithmic residue      288
Theorem(s) on convergence of Fourier series      195—199
Theorem(s) on uniform convergence      198
Theorem(s) on uniqueness of analytic functions      134
Theorem(s), Borel s      310
Theorem(s), Cantor’s      27
Theorem(s), Cauchy’s      64
Theorem(s), Cauchy’s integral      65
Theorem(s), Laurent’s      266
Theorem(s), Liouville’s      78
Theorem(s), mean-value      72
Theorem(s), Morera’s      78
Theorem(s), power series      122—123
Theorem(s), residue      278
Theorem(s), Riemann mapping      41
Theorem(s), Riemann’s      88
Theorem(s), RouchS’s      292
Theorem(s), Sochozky’s      271
Theorem(s), Taylor’s      124
Theorem(s), uniqueness      136 238
Transform(s)      298
Transform(s) of some elementary functions      300—301
Transform(s), differentiation of      306
Transform(s), Fourier’s convolution of      250
Transform(s), Fourier’s cosine      221
Transform(s), Fourier’s fast      249
Transform(s), Fourier’s in complex form      222
Transform(s), Fourier’s in real form      221
Transform(s), Fourier’s sine      221
Transform(s), integration of      307
Transform(s), Laplace      297
Transform(s), properties of      301—309
Transformation(s), Abel’s      100
Transformation(s), Fourier’s      200
Transformation(s), Fourier’s discrete      249
Transformation(s), Heaviside      299
Two-sheeted Riemann surface      25
Unit imaginary number      9 10
Variable, dependent      22
Variable, independent      22
Weierstrass’ test for uniform convergence      107—108
Zhukovsky’s function      50
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå