Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
Ìåõìàòÿíàì
square Ïåðâûé êóðñ

square Âòîðîé êóðñ

square Òðåòèé êóðñ

square ×åòâåðòûé êóðñ

square Ïÿòûé êóðñ
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
Êðàñîòà
blank
blank
Ðåçóëüòàò ïîèñêà

Ïîèñê êíèã, ñîäåðæàùèõ: Greatest common divisor



ÊíèãàÑòðàíèöû äëÿ ïîèñêà
Êîðìåí Ò., Ëåéçåðñîí ×., Ðèâåñò Ð. — Àëãîðèòìû: ïîñòðîåíèå è àíàëèç739
Koepf W. — Hypergeometric Summation. An algorithmic approach to summation and special function identities.62
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 267.H 297.A
Lang S. — Algebra111
Nathanson M.B. — Elementary methods in number theory12
Apostol T.M. — Introduction to Analytic Number Theory15, 20, 21
Dodge C.W. — Sets, logic & numbers91
Graham R.L., Knuth D.E., Patashnik O. — Concrete mathematics92, 103—104, 107, 145
Lipschutz Seymour — Schaum's Outline of Theory and Problems of Linear Algebra (Schaum's Outlines)447
Baker A. — Algebra and Number Theory3
Barbeau E.J. — Polynomials: a problem booksee Divisibility
Hoffman K., Kunze R. — Linear algebra133
Lueneburg H. — Tools and fundamental constructions of combinatorial mathematics29
Miller E., Sturmfels B. — Combinatorial Commutative Algebra81, 92
Eisenbud D. — Commutative algebra with a view toward algebraic geometry320
Bini D., Pan V.Y. — Polynomial and matrix computations. Fundamental algorithms. Vol.1See gcd
Becker T., Weispfenning V. — Groebner bases and commutative algebra4, 38, 43
Kreuzer M., Robbiano L. — Computational commutative algebra 131
Conway J.B. — Functions of One Complex Variable174
Benson D. — Mathematics and music148, 300
Maple 8. Learning guide64
Newman M. — Integral Matrices2
Bach E., Shallit J. — Algorithmic Number Theory (òîì 1)3, 34, 67—99, 186
Artin M. — Algebra46,395
Dummit D.S., Foote R.M. — Abstract Algebra4, 5, 273, 279, 285
Lorentzen L., Waadeland — Continued fractions and applications399
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume I: Foundations of Mathematics: The Real Number System and Algebra332, 358
Thorisson H. — Coupling, Stationarity, and Regeneration42
Burton D.M. — Elementary Number Theorysee also “Euclidean algorithm”
Merris R. — Combinatorics101
Lorenz F., Levy S. — Algebra, Volume I: Fields and Galois Theory34
Ash R.B. — Abstract algebra: the basic graduate year2.6, 7.7
Velleman D.J. — How to Prove It: A Structured Approach299
Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists4
Enderton H.B. — Elements of set theory172
Everest G., Ward T. — An Introduction to Number Theory36, 46
Knopfmacher J. — Abstract Analytic Number Theory33, 112
Humphreys J.E. — A Course in Group Theory235
Surowski D. — Workbook in higher algebra79, 80
Connell E.H. — Elements of abstract and linear algebra15
Accola R.D. — Topics in the Theory of Riemann Surfaces5
Lozansky E., Rousseau C. — Winning Solutions2
Thompson J.E. — Arithmetic for the Practical Man35
Allouche J.-P., Shallit J. — Automatic Sequences: Theory, Applications, Generalizations250
Boffi G., Buchsbaum D. — Threading Homology through Algebra: Selected Patterns1
Swallow J. — Exploratory Galois Theory9,11
Alaca S., Williams K.S. — Introductory Algebraic Number Theory11, 29, 64
Ciarlet P.G. (ed.), Lions J.L. (ed.) — Handbook of Numerical Analysis, Vol. 3634
Koblitz N. — A course in number theory and cryptography12
Olds C.D., Davidoff G. — Geometry of Numbers5, 7
Garey M.R., Johnson D.S. — Computers and intractability. A guide to the theory of NP-completeness250.
Humphreys J.F., Prest M.Y. — Numbers, Groups and Codes7,12, 31, 32, 43, 50, 268ff
Stillwell J. — Yearning for the Impossible: The Surprising Truths of Mathematicssee gcd
Murty M.R., Esmonde J. — Problems in algebraic number theory59
Sandor J., Mitrinovic D.S., Crstici B. — Handbook of Number Theory II263
Cohen H.A. — A Course in Computational Algebraic Number Theory7, 12, 115
Jones J.A., Jones J.M. — Elementary Number Theory5, 23
Hein J.L. — Discrete Mathematics26, 67, 249
Stewart I., Tall D. — Algebraic Number Theory and Fermat's Last Theorem114
Polya G. — Problems and Theorems in Analysis: Theory of Functions. Zeros. Polynomials. Determinants. Number Theory. Geometry116, 146
Knuth D.E. — The art of computer programming (vol. 2 Seminumerical Algorithms)330—356, 483
Lang S. — Undergraduate Algebra5, 119, 144
Ross Sh.M. — Topics in Finite and Discrete Mathematics24
Purdom R.W., Brown C.A. — The analysis of algorithms15
Ito K. — Encyclopedic Dictionary of Mathematics67.H, 297.A
Milovanovic G.V., Mitrinovic D.S., Rassias T.M. — Topics in Polynomials: Extremal Problems, Inequalities, Zeros94
Braunstein S.L. — Quantum computing15, 16, 19, 27
Kolman B., Busby R.C., Cutler S.C. — Discrete Mathematical Structures23
Guy R.K. — Unsolved Problems in Number theoryA, E2
Gruenberg K.W. — Linear Geometry161
Sheil-Small T. — Complex polynomials106
Tourlakis G.J. — Lectures in Logic and Set Theory: Mathematical Logic157
Alagić S., Arbib M.A. — The Design of Well-Structured and Correct Programs2—4, 7, 45—47, 49, 187, 223—226, 256
Dickson L.E. — History of the Theory of Numbers, Volume I: Divisibility and Primality139, 147, 150, 252, 328, 332—336, 394, 401—403, 447, 456, 482 (see also “Determinant of Smith”)
Knuth D.E. — The art of computer programming (Vol. 1. Fundamental algorithms)2, 4—6, 9, 14—15, 38—39, 42, 80—81
Knuth D.E. — The art of computer programming (Vol. 2. Seminumerical algorithms)316—339, 464
Brookshear J.G. — Computer Science: An Overview18
Olds C.D. — Continued Fractions17
Hein J.L. — Discrete Structures, Logic, and Computability25, 65, 245
Lawrence C. Paulson — ML for the working programmer3, 10, 48, 53, 248
Knuth D.E. — The art of computer programming (vol. 3 Sorting and Searching)91, 185, 683—684
McCoy N.H. — Rings and ideals42
Stetter H. J. — Numerical polynomial algebra207
Herman J., Simsa J., Kucera R. — Equations and Inequalities: Elementary Problems and Theorems in Algebra and Number Theory178, 180
Dickson L.E. — History of the Theory of Numbers, Volume ll: Diophantine Analysis50, 51, 73, 74, 313, 772 (see also “Euclid”)
D'Angelo J.P., West D.B. — Mathematical Thinking: Problem-Solving and Proofs123, 30, 133, 8, 145, 154, 164, 168, 193
Kozen D.C. — The Design And Analysis Of Algorithms4
Jacobson N. — Lectures in Abstract Algebra, Vol. 113, 118
Kuttler K. — Calculus, Applications and Theory33
Hubbard J.R. — Theory and Problems of Fundamentals of Computing with C++258
Fuhrmann P.A. — A Polynomial Approach to Linear Algebra10, 16
Ward S.A. — Computation Structures198, 340
Young R.M. — Excursions in Calculus: An Interplay of the Continuous and the Discretesee also “Euclidean algorithm”, 26
Knuth D.E. — The art of computer programming (vol. 1 Fundàmental algorithms)2—9, 13—14, 40, 81—82
Mac Lane S., Birkhoff G.D. — Algebra434
Kurosh A. — Higher Algebra131, 133
Hungerford T.W. — Algebra11, 140
Curtis M.L. — Abstract Linear Algebra90
Hubbard J.R. — Theory and Problems of Programming with C++123
Marcus M., Minc H. — Survey of matrix theory and matrix inequalities40
Pavičić M. — Quantum Computation and Quantum Communication: Theory and Experiments180
Moh T.T. — Algebra9, 117
Ginsburg S. — The mathematical theory of context-free languages5
Greub W.H. — Linear Algebra346
Bhaskara Rao K.P.S. — Theory of generalized inverses over commutative rings2
Lang S. — Algebra111
Ryser H.J. — Combinatorial Mathematics19
Cox D.A., Little J., O'Shea D. — Using Algebraic Geometrysee GCD
Seymour L. — Schaum's Outline of Theory and Problems of Discrete Math63, 321
Hans Rademacher — Lectures on elementary number theory15
Hu S.-T. — Introduction to contemporary mathematics51
United States NAVY — Mathematics, basic math and algebra (Navy course)34
Rosenfeld A. — An introduction to algebraic structures41, 127
Brewer J.W., Bunce J.W., Vleck F.S. — Linear systems over commutative rings29
Goldstein L.J. — Analytic Number Theory17
B.M. Stewart — Theory of Numbers34
Ginsburg S. — The mathematical theory of context-free languages5
Birkhoff G., Mac Lane S. — A Survey of Modern Algebra19, 81, 407
Bettinger A.K. — Algebra and Trigonometry (International Textbooks in Mathematics)30
Goodman A.W. — The Pleasures of Math168—170
Greub W.H. — Linear Algebra346
Baker A. — A Concise Introduction to the Theory of Numbers2
Brookshear J. — Computer Science18
Averbach B., Chein O. — Problem solving through recreational mathematics116, 128, 130, 131—132
Howie J.M. — Fields and Galois Theory26, 39
Moskowitz M.A. — Adventures in mathematics27
Moh T.T. — Algebra9, 117
Koepf W. — Hypergeometric summation. An algorithmic approach to summation and special function identities62
Penney D.E. — Perspectives in Mathematics205
Greene D.H., Knuth D.E. — Mathematics for the analysis of algorithms75
Weil A. — Number theory for beginners7
Greene D.H., Knuth D.E. — Mathematics for the analysis of algorithms71
Lipschutz S., Lipson M.L. — Schaum's outline of theory and problems of discrete mathematics63, 321
Gruenberg K.W., Weir A.J. — Linear Geometry161 (exx. 3, 6)
Du D.-Z., Ko K.-I. — Theory of computational complexity114
Daepp U., Gorkin P. — Reading, writing and proving. Close look at mathematics315
Lang S. — Linear Algebra285
Herstein I.N. — Topics in algebra18, 145
Niven I., Zuckerman H.S. — An Introduction to the Theory of Numbers4
Ore O. — Invitation to Number Theory40
Courant R., Robbins H. — What Is Mathematics?: An Elementary Approach to Ideas and Methods413—445
Fritzsche K., Grauert H. — From Holomorphic Functions To Complex Manifolds117
LeVeque W.J. — Elementary theory of numbers22, 101
Gossett E. — Discrete Math with Proof97
Benjamin A.T., Quinn J. — Proofs That Really Count The Art of Combinatorial Proof11, 118
Childs L. — A concrete introduction to higher algebra20, 132, 318
Abhyankar S.S. — Lectures on Algebra Volume 117—18
Hammerlin G., Hoffmann K.-H., Schumaker L.L. — Numerical Mathematics30, 31
Coutinho S. — The mathematics of ciphers: number theory and RSA cryptography7—8, 12, 22—23
Scheinerman E.A. — Mathematics: A Discrete Introduction299, 480, 547
Burgisser P., Clausen M., Shokrollahi M.A. — Algebraic complexity theorysee "Euclidean algorithm", "Euclidean representation"
Gill A. — Applied Algebra for the Computer Sciences84, 311
Kolman B., Busby R.C., Ross S. — Discrete Mathematical Structures24
Shen A. — Algorithms and Programming4
Ward S., Halstead R. — Computation Structures (MIT Electrical Engineering and Computer Science)198, 340
Gries D. — The science of programmingsee "gcd"
Ross D. — Master Math: Basic Math and Pre-Algebra (Master Math Series)34
Clocksin W.F., Mellish C.S. — Programming in Prolog, using the ISO standard176
Yaglom A.M., Yaglom I.M. — Probability and Information40, 365, 375
D'Angelo J.P., West D.B. — Mathematical thinking: problem-solving and proofs123—130, 133—138, 145, 154, 164, 168, 193
Brezinski C. — History of Continued Fractions and Padé Approximants3, 127, 190
Truss J.K. — Foundations of Mathematical Analysis56
Adámek J. — Foundations of Coding261
Lindstrum A.O. — Abstract algebra38
Truss J. — Foundations of mathematical analysis56
J. K. Truss — Foundations of mathematical analysis MCet56
Sondheimer E., Rogerson A. — Numbers and Infinity: A Historical Account of Mathematical Concepts24
blank
HR
@Mail.ru
© Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01!| Valid CSS! Î ïðîåêòå