Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Êîðìåí Ò., Ëåéçåðñîí ×., Ðèâåñò Ð. — Àëãîðèòìû: ïîñòðîåíèå è àíàëèç | 739 |
Koepf W. — Hypergeometric Summation. An algorithmic approach to summation and special function identities. | 62 |
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 67.H 297.A |
Lang S. — Algebra | 111 |
Nathanson M.B. — Elementary methods in number theory | 12 |
Apostol T.M. — Introduction to Analytic Number Theory | 15, 20, 21 |
Dodge C.W. — Sets, logic & numbers | 91 |
Graham R.L., Knuth D.E., Patashnik O. — Concrete mathematics | 92, 103—104, 107, 145 |
Lipschutz Seymour — Schaum's Outline of Theory and Problems of Linear Algebra (Schaum's Outlines) | 447 |
Baker A. — Algebra and Number Theory | 3 |
Barbeau E.J. — Polynomials: a problem book | see Divisibility |
Hoffman K., Kunze R. — Linear algebra | 133 |
Lueneburg H. — Tools and fundamental constructions of combinatorial mathematics | 29 |
Miller E., Sturmfels B. — Combinatorial Commutative Algebra | 81, 92 |
Eisenbud D. — Commutative algebra with a view toward algebraic geometry | 320 |
Bini D., Pan V.Y. — Polynomial and matrix computations. Fundamental algorithms. Vol.1 | See gcd |
Becker T., Weispfenning V. — Groebner bases and commutative algebra | 4, 38, 43 |
Kreuzer M., Robbiano L. — Computational commutative algebra 1 | 31 |
Conway J.B. — Functions of One Complex Variable | 174 |
Benson D. — Mathematics and music | 148, 300 |
Maple 8. Learning guide | 64 |
Newman M. — Integral Matrices | 2 |
Bach E., Shallit J. — Algorithmic Number Theory (òîì 1) | 3, 34, 67—99, 186 |
Artin M. — Algebra | 46,395 |
Dummit D.S., Foote R.M. — Abstract Algebra | 4, 5, 273, 279, 285 |
Lorentzen L., Waadeland — Continued fractions and applications | 399 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume I: Foundations of Mathematics: The Real Number System and Algebra | 332, 358 |
Thorisson H. — Coupling, Stationarity, and Regeneration | 42 |
Burton D.M. — Elementary Number Theory | see also “Euclidean algorithm” |
Merris R. — Combinatorics | 101 |
Lorenz F., Levy S. — Algebra, Volume I: Fields and Galois Theory | 34 |
Ash R.B. — Abstract algebra: the basic graduate year | 2.6, 7.7 |
Velleman D.J. — How to Prove It: A Structured Approach | 299 |
Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 4 |
Enderton H.B. — Elements of set theory | 172 |
Everest G., Ward T. — An Introduction to Number Theory | 36, 46 |
Knopfmacher J. — Abstract Analytic Number Theory | 33, 112 |
Humphreys J.E. — A Course in Group Theory | 235 |
Surowski D. — Workbook in higher algebra | 79, 80 |
Connell E.H. — Elements of abstract and linear algebra | 15 |
Accola R.D. — Topics in the Theory of Riemann Surfaces | 5 |
Lozansky E., Rousseau C. — Winning Solutions | 2 |
Thompson J.E. — Arithmetic for the Practical Man | 35 |
Allouche J.-P., Shallit J. — Automatic Sequences: Theory, Applications, Generalizations | 250 |
Boffi G., Buchsbaum D. — Threading Homology through Algebra: Selected Patterns | 1 |
Swallow J. — Exploratory Galois Theory | 9,11 |
Alaca S., Williams K.S. — Introductory Algebraic Number Theory | 11, 29, 64 |
Ciarlet P.G. (ed.), Lions J.L. (ed.) — Handbook of Numerical Analysis, Vol. 3 | 634 |
Koblitz N. — A course in number theory and cryptography | 12 |
Olds C.D., Davidoff G. — Geometry of Numbers | 5, 7 |
Garey M.R., Johnson D.S. — Computers and intractability. A guide to the theory of NP-completeness | 250. |
Humphreys J.F., Prest M.Y. — Numbers, Groups and Codes | 7,12, 31, 32, 43, 50, 268ff |
Stillwell J. — Yearning for the Impossible: The Surprising Truths of Mathematics | see gcd |
Murty M.R., Esmonde J. — Problems in algebraic number theory | 59 |
Sandor J., Mitrinovic D.S., Crstici B. — Handbook of Number Theory II | 263 |
Cohen H.A. — A Course in Computational Algebraic Number Theory | 7, 12, 115 |
Jones J.A., Jones J.M. — Elementary Number Theory | 5, 23 |
Hein J.L. — Discrete Mathematics | 26, 67, 249 |
Stewart I., Tall D. — Algebraic Number Theory and Fermat's Last Theorem | 114 |
Polya G. — Problems and Theorems in Analysis: Theory of Functions. Zeros. Polynomials. Determinants. Number Theory. Geometry | 116, 146 |
Knuth D.E. — The art of computer programming (vol. 2 Seminumerical Algorithms) | 330—356, 483 |
Lang S. — Undergraduate Algebra | 5, 119, 144 |
Ross Sh.M. — Topics in Finite and Discrete Mathematics | 24 |
Purdom R.W., Brown C.A. — The analysis of algorithms | 15 |
Ito K. — Encyclopedic Dictionary of Mathematics | 67.H, 297.A |
Milovanovic G.V., Mitrinovic D.S., Rassias T.M. — Topics in Polynomials: Extremal Problems, Inequalities, Zeros | 94 |
Braunstein S.L. — Quantum computing | 15, 16, 19, 27 |
Kolman B., Busby R.C., Cutler S.C. — Discrete Mathematical Structures | 23 |
Guy R.K. — Unsolved Problems in Number theory | A, E2 |
Gruenberg K.W. — Linear Geometry | 161 |
Sheil-Small T. — Complex polynomials | 106 |
Tourlakis G.J. — Lectures in Logic and Set Theory: Mathematical Logic | 157 |
Alagić S., Arbib M.A. — The Design of Well-Structured and Correct Programs | 2—4, 7, 45—47, 49, 187, 223—226, 256 |
Dickson L.E. — History of the Theory of Numbers, Volume I: Divisibility and Primality | 139, 147, 150, 252, 328, 332—336, 394, 401—403, 447, 456, 482 (see also “Determinant of Smith”) |
Knuth D.E. — The art of computer programming (Vol. 1. Fundamental algorithms) | 2, 4—6, 9, 14—15, 38—39, 42, 80—81 |
Knuth D.E. — The art of computer programming (Vol. 2. Seminumerical algorithms) | 316—339, 464 |
Brookshear J.G. — Computer Science: An Overview | 18 |
Olds C.D. — Continued Fractions | 17 |
Hein J.L. — Discrete Structures, Logic, and Computability | 25, 65, 245 |
Lawrence C. Paulson — ML for the working programmer | 3, 10, 48, 53, 248 |
Knuth D.E. — The art of computer programming (vol. 3 Sorting and Searching) | 91, 185, 683—684 |
McCoy N.H. — Rings and ideals | 42 |
Stetter H. J. — Numerical polynomial algebra | 207 |
Herman J., Simsa J., Kucera R. — Equations and Inequalities: Elementary Problems and Theorems in Algebra and Number Theory | 178, 180 |
Dickson L.E. — History of the Theory of Numbers, Volume ll: Diophantine Analysis | 50, 51, 73, 74, 313, 772 (see also “Euclid”) |
D'Angelo J.P., West D.B. — Mathematical Thinking: Problem-Solving and Proofs | 123, 30, 133, 8, 145, 154, 164, 168, 193 |
Kozen D.C. — The Design And Analysis Of Algorithms | 4 |
Jacobson N. — Lectures in Abstract Algebra, Vol. 1 | 13, 118 |
Kuttler K. — Calculus, Applications and Theory | 33 |
Hubbard J.R. — Theory and Problems of Fundamentals of Computing with C++ | 258 |
Fuhrmann P.A. — A Polynomial Approach to Linear Algebra | 10, 16 |
Ward S.A. — Computation Structures | 198, 340 |
Young R.M. — Excursions in Calculus: An Interplay of the Continuous and the Discrete | see also “Euclidean algorithm”, 26 |
Knuth D.E. — The art of computer programming (vol. 1 Fundàmental algorithms) | 2—9, 13—14, 40, 81—82 |
Mac Lane S., Birkhoff G.D. — Algebra | 434 |
Kurosh A. — Higher Algebra | 131, 133 |
Hungerford T.W. — Algebra | 11, 140 |
Curtis M.L. — Abstract Linear Algebra | 90 |
Hubbard J.R. — Theory and Problems of Programming with C++ | 123 |
Marcus M., Minc H. — Survey of matrix theory and matrix inequalities | 40 |
Pavičić M. — Quantum Computation and Quantum Communication: Theory and Experiments | 180 |
Moh T.T. — Algebra | 9, 117 |
Ginsburg S. — The mathematical theory of context-free languages | 5 |
Greub W.H. — Linear Algebra | 346 |
Bhaskara Rao K.P.S. — Theory of generalized inverses over commutative rings | 2 |
Lang S. — Algebra | 111 |
Ryser H.J. — Combinatorial Mathematics | 19 |
Cox D.A., Little J., O'Shea D. — Using Algebraic Geometry | see GCD |
Seymour L. — Schaum's Outline of Theory and Problems of Discrete Math | 63, 321 |
Hans Rademacher — Lectures on elementary number theory | 15 |
Hu S.-T. — Introduction to contemporary mathematics | 51 |
United States NAVY — Mathematics, basic math and algebra (Navy course) | 34 |
Rosenfeld A. — An introduction to algebraic structures | 41, 127 |
Brewer J.W., Bunce J.W., Vleck F.S. — Linear systems over commutative rings | 29 |
Goldstein L.J. — Analytic Number Theory | 17 |
B.M. Stewart — Theory of Numbers | 34 |
Ginsburg S. — The mathematical theory of context-free languages | 5 |
Birkhoff G., Mac Lane S. — A Survey of Modern Algebra | 19, 81, 407 |
Bettinger A.K. — Algebra and Trigonometry (International Textbooks in Mathematics) | 30 |
Goodman A.W. — The Pleasures of Math | 168—170 |
Greub W.H. — Linear Algebra | 346 |
Baker A. — A Concise Introduction to the Theory of Numbers | 2 |
Brookshear J. — Computer Science | 18 |
Averbach B., Chein O. — Problem solving through recreational mathematics | 116, 128, 130, 131—132 |
Howie J.M. — Fields and Galois Theory | 26, 39 |
Moskowitz M.A. — Adventures in mathematics | 27 |
Moh T.T. — Algebra | 9, 117 |
Koepf W. — Hypergeometric summation. An algorithmic approach to summation and special function identities | 62 |
Penney D.E. — Perspectives in Mathematics | 205 |
Greene D.H., Knuth D.E. — Mathematics for the analysis of algorithms | 75 |
Weil A. — Number theory for beginners | 7 |
Greene D.H., Knuth D.E. — Mathematics for the analysis of algorithms | 71 |
Lipschutz S., Lipson M.L. — Schaum's outline of theory and problems of discrete mathematics | 63, 321 |
Gruenberg K.W., Weir A.J. — Linear Geometry | 161 (exx. 3, 6) |
Du D.-Z., Ko K.-I. — Theory of computational complexity | 114 |
Daepp U., Gorkin P. — Reading, writing and proving. Close look at mathematics | 315 |
Lang S. — Linear Algebra | 285 |
Herstein I.N. — Topics in algebra | 18, 145 |
Niven I., Zuckerman H.S. — An Introduction to the Theory of Numbers | 4 |
Ore O. — Invitation to Number Theory | 40 |
Courant R., Robbins H. — What Is Mathematics?: An Elementary Approach to Ideas and Methods | 413—445 |
Fritzsche K., Grauert H. — From Holomorphic Functions To Complex Manifolds | 117 |
LeVeque W.J. — Elementary theory of numbers | 22, 101 |
Gossett E. — Discrete Math with Proof | 97 |
Benjamin A.T., Quinn J. — Proofs That Really Count The Art of Combinatorial Proof | 11, 118 |
Childs L. — A concrete introduction to higher algebra | 20, 132, 318 |
Abhyankar S.S. — Lectures on Algebra Volume 1 | 17—18 |
Hammerlin G., Hoffmann K.-H., Schumaker L.L. — Numerical Mathematics | 30, 31 |
Coutinho S. — The mathematics of ciphers: number theory and RSA cryptography | 7—8, 12, 22—23 |
Scheinerman E.A. — Mathematics: A Discrete Introduction | 299, 480, 547 |
Burgisser P., Clausen M., Shokrollahi M.A. — Algebraic complexity theory | see "Euclidean algorithm", "Euclidean representation" |
Gill A. — Applied Algebra for the Computer Sciences | 84, 311 |
Kolman B., Busby R.C., Ross S. — Discrete Mathematical Structures | 24 |
Shen A. — Algorithms and Programming | 4 |
Ward S., Halstead R. — Computation Structures (MIT Electrical Engineering and Computer Science) | 198, 340 |
Gries D. — The science of programming | see "gcd" |
Ross D. — Master Math: Basic Math and Pre-Algebra (Master Math Series) | 34 |
Clocksin W.F., Mellish C.S. — Programming in Prolog, using the ISO standard | 176 |
Yaglom A.M., Yaglom I.M. — Probability and Information | 40, 365, 375 |
D'Angelo J.P., West D.B. — Mathematical thinking: problem-solving and proofs | 123—130, 133—138, 145, 154, 164, 168, 193 |
Brezinski C. — History of Continued Fractions and Padé Approximants | 3, 127, 190 |
Truss J.K. — Foundations of Mathematical Analysis | 56 |
Adámek J. — Foundations of Coding | 261 |
Lindstrum A.O. — Abstract algebra | 38 |
Truss J. — Foundations of mathematical analysis | 56 |
J. K. Truss — Foundations of mathematical analysis MCet | 56 |
Sondheimer E., Rogerson A. — Numbers and Infinity: A Historical Account of Mathematical Concepts | 24 |