|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Burton D.M. — Elementary Number Theory |
|
|
Ïðåäìåòíûé óêàçàòåëü |
-function (Mobius) 112—113 407—408
see “Euler’s phi-function”
as irrational number 329
, continued fractions representation 327—328 331—332
, decimal expansion of 353
, infinite series representation 306
(prime counting function) for p = an + b 53
(prime counting function), approximations of 373—376
(prime counting function), defined 371
(prime counting function), Prime Number Theorem proof and 375—378
(prime counting function), properties of 371—373
notation 106—107
factorization method 354—356
see “Sum of divisors”
notation, defined 104
notation, multiplicative property and 109 115
see “Number of divisors”
A Course in Pure Mathematics (Hardy) 350—351
Absolute pseudoprime numbers 91 363
Abundant numbers 235
Adleman, Leonard 203
Agrawal, Manindra (1966—) 354
Alcuin (c.732—804) 38 219
Alembert, Jean Le Rond d’ (1717—1783) 63 262
Alexandrian Museum 14—15
Algebraic numbers 254
Amicable numbers 233
Amicable pairs 233—235
Amicable triples 236
An Elementary Proof of the Prime Number Theorem (Selberg) 378
Anthoniszoon, Adriaen (1527—1617) 332
Apery, Roger (1916—1994) 373
Arabic numerals 284
Archimedean property 2
Archimedean value of 331
Archimedes (c.287—212 B.C.) 331 346
Area of Pythagorean triangles 250 257
Arithmetic functions see “Number-theoretic functions”
Arithmetic progressions of numbers, primes 54—55 375
Arithmetic progressions of numbers, pseudoprimes 90
Arithmetica (Diophantus), Bombelli and 307
Arithmetica (Diophantus), Fermat and 245—246 257 346
Arithmetica (Diophantus), history of 32
Arithmetica (Diophantus), recovery of script 85—86
Artin, Emil (1898—1962) 157
Artin’s conjecture 157
Aryabhata I (476—C.550 a.d.) 15
Augustine, Saint (354—430) 219
Authentication of messages 215—216
Autokey cryptosystems 200—201
Bachet, Claude (1581—1638) 86 273
Barlow, Peter (1776—1862) 228—229
Bases for number systems 70
Basis for induction 4
Baudot code 202
Baudot, Jean-Maurice-Emile (1845—1903) 202
Bennett, G. 237
Bernoulli inequality 7
Bernoulli, Daniel (1700—1782) 129 130
Bernoulli, Johann (1667—1748) 129
Bernoulli, Nicolaus (1695—1726) 129 130
Bertrand, Joseph (1822—1900) 48
Bertrand’s conjecture 48 352 371
Bhaskara II(1114—c.1185) 83
Binary exponential algorithm 70—71
Binary number representation 70—71
Binet formula 296—298
Binet, Jacques-Philippe-Marie (1786—1856) 296
Binomial coefficients as integers 119
Binomial coefficients, defined 8
Binomial coefficients, Fibonacci numbers formula 302
Binomial coefficients, identities 8—10
Binomial congruences 164
Binomial theorem 8—10
Blum integers 369
Blum, Manuel (1938—) 367
Blum’s coin flipping game 367—370
Bombelli, Rafael (1526—1572) 307
Bonse’s inequality 47
Bracket function 117 119—121
Brahmagupta (598—C.665) 83 346
Brent, Richard 240 241 356
Brillhart, John (1930—) 240 357 360
Brouncker, William (1620—1684) 332 335—336
Brun, Viggo (1882—1978) 375
Brun’s constant 375
Caesar, Julius (100—44 B.C.), cipher system 197—198
Caesar, Julius (100—44 B.C.), Julian calendar 122 123
Calendars 122—124
Canonical form 42
Carlyle, Thomas (1795—1881) 175
Carmichael numbers 91 363
Carmichael, Robert D. (1879—1967) 91
Catalan equation 257—258
Catalan numbers 12
Catalan, Eugene (1814—1894) 12 258
Catalan’s conjecture 258
Cataldi, Pietro (1548—1626) 222
Cattle problem 346
Chain of inequalities (continued fractions) 317—318
Chang Ch’iu-chien (6th century a.d.) 36 37
Check digits 72—73
Chinese Remainder Theorem in Blum’s coin flipping game 368 370
Chinese Remainder Theorem, defined 79—81
Chinese Remainder Theorem, Euler’s generalization of Fermat’s theorem and 139—140
Cicero, Marcus Tullius (106—43 B.C.) 197 198
Ciphers, autokey systems 200—201
Ciphers, Caesar 198
Ciphers, defined 197
Ciphers, Elgamal 213—216
Ciphers, Hill 201
Ciphers, Merkle — Hellman 209—212
Ciphers, Vigenere 199—200
Clavius, Christopher (1537—1612) 123
Cogitata Physica-Mathematica (Mersenne) 225
Coin flipping, remote 367—370
Cole Prize 351
Cole, Frank Nelson (1861—1926) 226
Common divisors 20—21
Common multiples 29
Complete set of residues modulo n 64
Composite numbers 39 305 “Primality
Computational number theory 353
Computers in number theory, cryptography and 197 205—206
Computers in number theory, Mersenne primes and 229—230
Computers in number theory, prime number factorization and 353
Congruences 63—82 (see also “Quadratic congruences”)
Congruences in Caesar cipher 198
Congruences, basic properties 63—67
Congruences, binomial 164
Congruences, check digits 72—73
Congruences, Chinese Remainder Theorem 79—81
Congruences, days of the week and 123
Congruences, defined 63
Congruences, indices for solving 164—167
Congruences, linear in two variables 81—82
Congruences, partition function and 305
Congruences, place-value notation systems 69—71
Congruences, polynomial functions 71—72
Congruences, simultaneous linear 78—79
Congruences, single linear 76—78
Congruences, to perfect squares 100
Congruent modulo n, defined 63
Constant function f(n) = n 107 110
Continued fraction algorithm (irrational numbers) 326—328
Continued fraction factoring algorithm 357—360
Continued fractions, defined 306 (see also “Finite continued fractions; infinite continued fractions” “Pell’s
Convergents of continued fractions, 327—328
Convergents of continued fractions, finite continued fractions 311—315 317—318
Convergents of continued fractions, infinite continued fractions 321—322 325—326
| Convergents of continued fractions, Pell’s equation and 336 337—341
Critical line of the zeta function 376
Cryptography 197—216
Cryptography, defined 197
Cryptography, Elgamal system 213—216
Cryptography, knapsack problems 208—209
Cryptography, Merkle — Hellman knapsack system 209—212
Cryptography, monoalphabetic systems 197—198
Cryptography, poly alphabetic systems 198—201
Cryptography, RSA system 203—206
Cryptography, Verman one-time pad system 202—203
Cunningham, Allen Joseph (1848—1928) 229
Day of the week, determining 123—126
de Polignac, Alphonse (1817—1890) 58
Decimal number representation 71
Deciphering/decrypting, defined 197 (see also “Cryptography”)
Decomposition into primes see “Factorization into primes”
Deficient numbers 235
Denominator of Legendre symbol 175
Descartes, Rene (1596—1650), amicable pair discovery 234
Descartes, Rene (1596—1650), citations 235 273
Descartes, Rene (1596—1650), Mersenne and 217 218
Dickson, Leonard Eugene (1874—1954) 278 351
Difference of two squares 269—270
Digital alphabet for RSA cryptosystem 203—204
Digital signatures 215—216
Digits of a number, defined 71
Diophantine equations, 245—250
Diophantine equations, 252—253
Diophantine equations, 253—254
Diophantine equations, 256—258
Diophantine equations, 245—246 254—255
Diophantine equations, ax + by + cz = d 36—37
Diophantine equations, ax + by = c 32—35
Diophantine equations, defined 32
Diophantine equations, Fibonacci work on 283
Diophantine equations, linear congruences and 76 78
Diophantine equations, linear in two unknowns 32—35
Diophantine equations, word problems 35—37
Diophantus of Alexandria (3rd century a.d.) on sum of three squares 273
Diophantus of Alexandria (3rd century a.d.), biographical information 32
Dirichlet, Peter Gustav Lejeune (1805—1859), citations 54 172 186 375
Dirichlet, Peter Gustav Lejeune (1805—1859), Fermat’s Last Theorem work 254
Dirichlet, Peter Gustav Lejeune (1805—1859), pigeonhole principle 264
Dirichlet’s Theorem 54
Discrete logarithm problems, cryptography and 213
Disquisitiones Arithmeticae (Gauss), citations 157 163 175 354
Disquisitiones Arithmeticae (Gauss), history of 61 63
Disquisitiones Arithmeticae (Gauss), Quadratic Reciprocity Law 186
Disquisitiones Arithmeticae (Gauss), regular polygons 237
Divergent series 374—375
Divisibility theory 13—38
Divisibility theory by 9 or 11 71—72
Divisibility theory, Diophantine equations 32—37
Divisibility theory, Division Algorithm 17—19
Divisibility theory, early number theory 13—16
Divisibility theory, Euclidean algorithm 26—31
Divisibility theory, greatest common divisor 19—24
Divisibility theory, Mersenne and 218
Divisibility theory, symbols for 20
Division algorithm 17—19
divisors see also “Number of divisors” “Sum
Divisors from prime factorizations 104—105
Divisors, common 20—21
Divisors, defined 20
Divisors, greatest common 21 24
Divisors, Mersenne numbers 228—229
Double Wieferich primes 258
e (continued fractions representation) 328—329
e-prime numbers 42
Early number theory 13—16
Eisenstein, Ferdinand Gottfried Max (1823—1852) 186
El Madschriti of Madrid (11th century) 234
Elements (Euclid), Diophantine equations and 32
Elements (Euclid), Euclidean algorithm 26
Elements (Euclid), Euclid’s theorem 45
Elements (Euclid), Fundamental Theorem of Arithmetic 39—40
Elements (Euclid), history of 15
Elements (Euclid), Legendre revision of 175
Elements (Euclid), perfect numbers work 220
Elements (Euclid), translations of 85
Elements de Geometrie (Legendre) 175
Elgamal cryptosystem 213—216
Elgamal, Taher (1955—) 213
Elkies, Noam 279
Elliptic curves 255
Enciphering exponent 203 204
Enciphering modulus 203
Enciphering/encrypting, defined 197 (see also “Cryptography”)
Encke, Johann Franz (1791—1865) 374
Equality, congruence and 65
Eratosthenes of Cyrene (c.276—c.194 B.C.) 45 346
Erdos, Paul (1913—1996) 351—353
Essai sur la Theorie des Nombres (Legendre) 175 186 373
Essaipour les Coniques (Pascal) 217
Euclid (c.300 B.C.), citations 246
Euclid (c.300 B.C.), early number theory 15
Euclid (c.300 B.C.), perfect numbers work 220
Euclidean algorithm, defined 26—28
Euclidean algorithm, least common multiple and 29—30
Euclidean algorithm, more than two integers 30—31
Euclidean algorithm, number of steps 28—29
Euclidean numbers 46
Euclid’s lemma 24
Euclid’s theorem, defined 45—48
Euclid’s theorem, Euler’s phi-function and 134—135
Euler polynomial 55—56
Euler, Leonhard (1707—1783), , symbol 327
Euler, Leonhard (1707—1783), amicable pair work 234 235
Euler, Leonhard (1707—1783), biographical information 129—131 262
Euler, Leonhard (1707—1783), citations 55 57 63 87 185 221 265 279
Euler, Leonhard (1707—1783), e continued fractions representation 328
Euler, Leonhard (1707—1783), Fermat numbers work 237 240
Euler, Leonhard (1707—1783), Fermat’s Last Theorem work 254
Euler, Leonhard (1707—1783), Goldbach conjecture and 51
Euler, Leonhard (1707—1783), Mersenne numbers work 225—226
Euler, Leonhard (1707—1783), on Catalan equation 258
Euler, Leonhard (1707—1783), on odd perfect numbers 231 232
Euler, Leonhard (1707—1783), on triangular numbers 15
Euler, Leonhard (1707—1783), Pell’s equation and 336
Euler, Leonhard (1707—1783), photo of 130
Euler, Leonhard (1707—1783), primitive roots for primes 162
Euler, Leonhard (1707—1783), proof of Fermat’s theorem 87 136
Euler, Leonhard (1707—1783), sum of four squares 273
Euler, Leonhard (1707—1783), Waring’s problem 351
Euler, Leonhard (1707—1783), word problems 38
Euler, Leonhard (1707—1783), zeta function formula 373
Euler’s criterion, citations 180
Euler’s criterion, defined 171—172
Euler’s criterion, Dirichlet’s proof of 172—173
Euler’s generalization of Fermat’s theorem, applications of 139—140
Euler’s generalization of Fermat’s theorem, defined 137—138
Euler’s generalization of Fermat’s theorem, Fermat’s Little Theorem as proof of 139
Euler’s identity 273 277
Euler’s phi-function as even integer 134
Euler’s phi-function as multiplicative function 132 133 142
Euler’s phi-function , defined 131—132
Euler’s phi-function , Euclid’s theorem and 134—135
Euler’s phi-function , Gauss’ theorem and 141—143
Euler’s phi-function , Mobius inversion formula and 144—145
Euler’s phi-function , sum of integers identity 143
Euler’s phi-function , table of 407—408
Even-numbered convergents 317—318 321
Even-numbered convergents in Pythagorean triples 247
Even-numbered convergents, defined 18
Even-numbered convergents, Euler’s phi-function as 134
Exponent of a prime in n! factorization 117—118
Exponent to which a belongs modulo n 147—150
Exponent, enciphering 203 204
Exponent, recovery 204
|
|
|
Ðåêëàìà |
|
|
|