|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Burton D.M. — Elementary Number Theory |
|
|
Ïðåäìåòíûé óêàçàòåëü |
Meditationes Algebraicae (Waring) 277
Merkle — Hellman knapsack cryptosystem 209—212
Merkle, Ralph 209
Mersenne numbers, defined 225
Mersenne numbers, divisor properties 228—229
Mersenne numbers, primality tests 226 227—228 230—231
Mersenne numbers, search for larger numbers 226 229—230 231
Mersenne primes, defined 225
Mersenne primes, table of 230
Mersenne, Marin (1588—1648), biographical information 217—218
Mersenne, Marin (1588—1648), citations 97 102 237
Mersenne, Marin (1588—1648), correspondence on amicable pairs 234
Mersenne, Marin (1588—1648), Fermat correspondence 265
Mersenne, Marin (1588—1648), Mersenne numbers work 225 226
Mersenne, Marin (1588—1648), photo of 219
Mertens conjecture 115—116
Mertens, Franz (1840—1927) 115
Mihailescu, Preda 258
Miller — Rabin primality test 365—366
Mills, WH. (1921—) 57
Mobius -function 112—113 407—408
Mobius inversion formula, defined 113—115
Mobius inversion formula, Euler’s phi-function and 144—145 155
Modulo n (congruence), check digits and 73
Modulo n (congruence), defined 63—64
Monoalphabetic cryptosystems 197—198
Monte Carlo factorization method 354—356
Morain, Francois 241
Morehead, J. C 239 240
Morrison, Michael A. 240 357 360
Muller, Johannes see “Regiomontanus (1436—1476)”
Multiples, defined 20
Multiplicative functions, and as 108 109—110
Multiplicative functions, defined 107—108
Multiplicative functions, Euler’s phi-function as 132 133 142
Multiplicative functions, Mobius -function as 112 144 145
Multiplicative inverse of a modulo n 11
Multiplicatively perfect numbers 224
Multiply perfect numbers 224
Natural numbers, defined 1
Newton’s identity 10
Nickel, Laura 229
Nicomachus of Gerasa (c.100 a.d.) 15 79 219
Noll, Curt 229
Nonalphabetic cryptosystems 202—203
Nonnegative residues modulo n 64
Nonresidues, quadratic 171 172—173 178—179
Notation systems, notation 106—107
Notation systems, notation 104 109 115
Notation systems, binary numbers 69—71
Notation systems, decimal numbers 71
Notation systems, finite continued fractions 310
Notation systems, infinite continued fractions 321
Number of divisors as multiplicative function 108 109—110
Number of divisors , basic properties 103—107
Number of divisors , greatest integer function and 120
Number of divisors , table of 407—408
Number-theoretic functions 103—126 (see also “Euler’s phi-function”)
Number-theoretic functions, calendar applications 122—126
Number-theoretic functions, defined 103
Number-theoretic functions, greatest integer function and 119—121
Number-theoretic functions, Mobius inversion formula 112—116
Number-theoretic functions, multiplicative functions 107—110
Number-theoretic functions, number of divisors 103—107
Number-theoretic functions, sum of divisors 103—107
Numbers see also “Composite numbers” “Fermat “Fibonacci “Mersenne “Perfect “Prime “Relatively
Numbers, absolute pseudoprime 91 363
Numbers, abundant 235
Numbers, algebraic 254
Numbers, amicable 233
Numbers, Catalan 12
Numbers, deficient 235
Numbers, e-prime 42
Numbers, Euclidean 46
Numbers, even 18 134 247
Numbers, Germain 182
Numbers, highly composite 305
Numbers, ideal 254
Numbers, k-perfect 224
Numbers, Lucas 301
Numbers, multiplicatively perfect 224
Numbers, multiply perfect 224
Numbers, natural, defined 1
Numbers, odd 18 160—162 231—233 247 394—403
Numbers, palindromes 75
Numbers, Pell 348
Numbers, pentagonal 16
Numbers, pseudoprime 90—92 242
Numbers, regular prime 254
Numbers, repunit 48—49
Numbers, Skewes 377
Numbers, square-free 43 91
Numbers, square-full 43
Numbers, strong pseudoprime 367
Numbers, superperfect 225
Numbers, triangular 15—16 257 295
Numerator of Legendre symbol 175
Odd-numbered convergents 317—318 321
Odd-numbered convergents in Pythagorean triples 247
Odd-numbered convergents, defined 18
Odd-numbered convergents, perfect 231—233
Odd-numbered convergents, prime factors, table of 394—403
Odd-numbered convergents, primitive roots for 160—162
Odlyzko, Andrew M. 116
One-time pad cryptosystems, Verman 202—203
One-time pad cryptosystems, Vigenere 200
Opera Mathematica (Wallis) 336
Order of a modulo n 147—150
Pairs of quadratic residues 171
Palindromes 75
Parkin, Thomas 279
Partial denominators 307 310
Partial quotients 310
Partition theory 304—305
Pascal, Blaise (1623—1662), mathematical induction work 10
Pascal, Blaise (1623—1662), scholarly gatherings 217 218
Pascal’s rule 8
Pascal’s triangle 9
Pell numbers 348
Pell, John (1611—1685) 336
Pell’s equation, continued fraction expansions 337—341
Pell’s equation, fundamental solution 343—344
Pell’s equation, history of 334—336 346
Pell’s equation, integral solutions 345—346
Pell’s equation, positive solutions 337 342—343 344—345
Pentagonal numbers 16
Pepin, Theophile (1826—1904) 238
Pepin’s test 238—240
Perfect numbers, defined 219—220
Perfect numbers, discovery of larger numbers 226 229—230 231
Perfect numbers, final digits of 223
Perfect numbers, general form 220—222
Perfect numbers, odd 231—233
Period (continued fraction expansions) 322 338 339
Periodic continued fractions 322 338—340
Personal identification numbers, check digits for 72—73
Peter the Great (1672—1725) 130
Phi-function see “Euler’s phi-function”
Piazzi, Giuseppi (1746—1826) 63
Pigeonhole Principle 264
Place-value notation systems 69—71
Plaintext 197
Plutarch (c.46—after 119 a.d.) 15
Pocklington, Henry (1870—1952) 364
Pocklington’s theorem 364—365
Poe, Edgar Allan (1809—1849) 198—199
Polignac, Alphonse de (1817—1890) 58
Pollard, John M., citations 240 241
Pollard, John M., p - 1 factorization method 356—357
Pollard, John M., rho factorization method 354—356
| Polya conjecture 353
Polya, George (1888—1985) 353
Polyalphabetic cryptosystems 198—201
POLYGONS 62 237—238
Polynomial congruences, divisibility tests 71—72
Polynomial congruences, Lagrange’s theorem and 152—154
Positive solutions (Pell’s equation) 337 342—343 344—345
Powerful numbers 43
Powers, R. E. 229
Primality tests, computers and 229—230
Primality tests, efficient algorithms for 354
Primality tests, Fermat’s Little Theorem methods 89 362—365
Primality tests, Mersenne numbers 226 227—228 230—231
Primality tests, Miller — Rabin test 365—366
Primality tests, Pepin’s test 238—240
Primality tests, Wilson’s theorem 95
prime factors see “Factorization into primes”
Prime Number Theorem, arithmetic proofs of 352 378
Prime Number Theorem, complex proofs of 375—377
Prime Number Theorem, defined 371
Prime numbers 39—57 (see also “Infinitude of primes” “Pseudoprime
Prime numbers as sum of four squares 275—277
Prime numbers of the form 240 242
Prime numbers of the form 46
Prime numbers of the form 4n + 1 53 54 177—178 188 265—267
Prime numbers of the form 4n + 3 53—54 188 264 267—268
Prime numbers of the form 8k + 1/3/5/7 181
Prime numbers of the form 8k - 1 181
Prime numbers of the form an + b 53
Prime numbers of the form n! + 1 96
Prime numbers, arithmetic progressions of 54—55 90 375
Prime numbers, defined 39
Prime numbers, double Wieferich 258
Prime numbers, Euclid’s theorem 45—48
Prime numbers, Fundamental Theorem of Arithmetic 39—42
Prime numbers, gaps between 50—51
Prime numbers, Germain 182
Prime numbers, Goldbach conjecture 51—52
Prime numbers, length of intervals 377—378
Prime numbers, of the form 53
Prime numbers, prime-producing functions 55—57
Prime numbers, primitive roots 154—157
Prime numbers, repunit 48—49
Prime numbers, sieve of Eratosthenes 44—45
Prime numbers, tables of 404—406
Prime numbers, twin 50 375 406
Prime-producing functions 55—57
Prime-triplets 58
Primers (autokey cryptosystems) 200
Primitive Pythagorean triples defined 246
Primitive Pythagorean triples defined, properties of 247—249
Primitive Pythagorean triples defined, table of 249
Primitive roots, composite numbers 158—162
Primitive roots, cryptography application 213
Primitive roots, defined 150—151
Primitive roots, Legendre symbol and 181—182
Primitive roots, number of 151
Primitive roots, prime numbers 154—157
Primitive roots, tables of 156 393
Probabilistic primality tests 366
Progressions of numbers see “Arithmetic progressions of numbers”
Proth, E. 367
Pseudoprime numbers 90—92 242 363
Public-key crypto systems, defined 203
Public-key crypto systems, Elgamal system 213—216
Public-key crypto systems, Merkle — Hellman knapsack system 209—212
Public-key crypto systems, RSA system 203—206
Puzzle problems, cattle 346
Puzzle problems, congruences 79—80
Puzzle problems, Diophantine equations 35—37
Puzzle problems, hundred fowls 36—37
Puzzle problems, square/rectangle geometric deception 293—294
Pythagoras (c.580—c.500 B.C.) on irrational numbers 42
Pythagoras (c.580—c.500 B.C.) on triangular numbers 15
Pythagoras (c.580—c.500 B.C.), citations 235 246
Pythagoras (c.580—c.500 B.C.), early number theory 13—14
Pythagorean triangles 250 257
Pythagorean triples 246 247—249
Pythagoreans on perfect numbers 219 221
Pythagoreans, amicable pairs and 234
Pythagoreans, history of 14
Pythagoreans, number classification 42
Quadratic congruences in Blum’s coin flipping game 367—369
Quadratic congruences with composite moduli 189—190 192—195
Quadratic congruences, indices for solving 164—165
Quadratic congruences, primitive roots 155—156
Quadratic nonresidues, defined 171
Quadratic nonresidues, Euler’s criterion 172—173
Quadratic nonresidues, Legendre symbol and 178—179
Quadratic Reciprocity Law and 189—190
Quadratic Reciprocity Law and simplification of 169—170
Quadratic Reciprocity Law and solvability criteria 192 194 195
Quadratic Reciprocity Law and Wilson’s theorem and 95—96
Quadratic Reciprocity Law, defined 186
Quadratic Reciprocity Law, generalized 192
Quadratic Reciprocity Law, history of 169 185—186
Quadratic Reciprocity Law, properties of 188—190
Quadratic residues, defined 171
Quadratic residues, Euler’s criterion 171—173
Quadratic residues, Legendre symbol and 178—179
Quadratic residues, sum of four squares problem and 275
Quadratic sieve factoring algorithm 360—362
Quadrivium 13
Quotients 17
Radius of inscribed circle of Pythagorean triangles 250
Ramanujan, Srinivasa Aaiyangar (1887—1920), biographical information 303—306
Ramanujan, Srinivasa Aaiyangar (1887—1920), fraction expansions 320
Ramanujan, Srinivasa Aaiyangar (1887—1920), photo of 304
Ramanujan, Srinivasa Aaiyangar (1887—1920), sum of two cubes 272
Ramanujan’s conjecture 305
Rational numbers as finite continued fractions 307—310
Rational numbers as irrational numbers approximation 329—331
Recovery exponent 204
Rectangle/square Fibonacci number problem 293—294
Recursive sequences 286
Reduced set of residues modulo n 141
Regiomontanus (1436—1476) 83 85 279
Regius, Hudalrichus (fl. 1535) 222
Regular polygons 62 237—238
Regular prime numbers 254 (see also “Prime numbers”)
Relatively prime numbers in Pythagorean triples 247
Relatively prime numbers, convergent numerators and denominators as 314—315
Relatively prime numbers, defined 22—23
Relatively prime numbers, Fermat numbers as 238
Relatively prime numbers, Fibonacci numbers as 286—288
Relatively prime numbers, multiplicative property and 107
Remainder 17 28
Remote coin flipping 367—370
Representation of integers, difference of two squares 269—270
Representation of integers, sum of four squares 263 273—277
Representation of integers, sum of three squares 272—273
Representation of integers, sum of two squares 264—269
Representation of integers, Waring’s problem 277—279 350—351
Representation of integers, Zeckendorf 295—296
Repunit numbers 48—49
Residues, complete set 64
Residues, least nonnegative 64
Residues, quadratic 171—173 178—179 275
Residues, reduced set 141
Rho factorization method 354—356
Riemann hypothesis 376
Riemann, Georg Friedrich Bernhard (1826—1866) 375—376
Rivest, Ronald L. 203
RSA public-key cryptosystem 203—206
RSA-129 cryptosystem 206
RSA-576 cryptosystem 206
Rudolff, Christoff (fl. 1526) 38
Running keys 200
Saxena, Nitin 354
Second Principle of Finite Induction 5—6
|
|
|
Ðåêëàìà |
|
|
|