|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Burton D.M. — Elementary Number Theory |
|
|
Ïðåäìåòíûé óêàçàòåëü |
Exponent, universal 162
Factor bases 360
Factorials, inductively defined 5
Factorization into primes, canonical form 42
Factorization into primes, computers and 353
Factorization into primes, continued fraction factoring algorithm 357—360
Factorization into primes, divisors from 104—105
Factorization into primes, Euler’s phi-function and 132 134
Factorization into primes, Fermat method 97—101
Factorization into primes, Fermat numbers 240—242
Factorization into primes, Fibonacci numbers 287 298—299
Factorization into primes, Fundamental Theorem of Arithmetic 40 41—42
Factorization into primes, Kraitchik method 100—101 360
Factorization into primes, Mersenne numbers 226
Factorization into primes, Pollard’s methods 354—357
Factorization into primes, quadratic sieve algorithm 360—362
Factorization into primes, remote coin flipping 367—370
Factorization into primes, RSA cryptosystem and 203 204 205—206
Factors (divisors) 20
Faltings, Gerd 254
Fermat numbers, defined 236—237
Fermat numbers, factorization into primes 240—242 353 356 357 360
Fermat numbers, primality tests 238—240
Fermat numbers, regular polygons and 237—238
Fermat numbers, table of 241
Fermat — Kraitchik factorization method 97—101 360
Fermat — Kraitchik factorization method, defined 236
Fermat — Kraitchik factorization method, regular polygons and 237—238
Fermat, Pierre de (1601—1665), amicable pair discovery 234
Fermat, Pierre de (1601—1665), biographical information 85—87
Fermat, Pierre de (1601—1665), citations 97 98 129 228 235
Fermat, Pierre de (1601—1665), Fermat numbers work 236—237
Fermat, Pierre de (1601—1665), marginal notes 245—246
Fermat, Pierre de (1601—1665), Mersenne correspondence 218
Fermat, Pierre de (1601—1665), on Pythagorean triangles 250 257
Fermat, Pierre de (1601—1665), on sum of three squares 273
Fermat, Pierre de (1601—1665), Pell’s equation and 334—336
Fermat, Pierre de (1601—1665), photo of 86
Fermat, Pierre de (1601—1665), primes as sums of two squares 265—267
Fermat’s Last Theorem, case 252—253
Fermat’s Last Theorem, case 253—254
Fermat’s Last Theorem, case 256—258
Fermat’s Last Theorem, defined 245—246
Fermat’s Last Theorem, history of proof of 254—255
Fermat’s Little Theorem, citations 171 172
Fermat’s Little Theorem, defined 87—89
Fermat’s Little Theorem, Euler’s generalization of 137—138 139—140
Fermat’s Little Theorem, Euler’s proof of 87 136
Fermat’s Little Theorem, falseness of converse of 89—90
Fermat’s Little Theorem, Lucas’s converse of 363—364
Fermat’s method of infinite descent 252 254 258 273 335
Fermat’s test for nonprimality 362—363
Fibonacci (c.1170—after 1240), biographical information 283—285
Fibonacci (c.1170—after 1240), citations 286
Fibonacci (c.1170—after 1240), continued fractions 306
Fibonacci (c.1170—after 1240), image of 284
Fibonacci numbers, as relatively prime numbers 286—288
Fibonacci numbers, basic identities 292—293
Fibonacci numbers, Binet formula 296—298
Fibonacci numbers, continued fractions representation 310—311 322
Fibonacci numbers, defined 284—286
Fibonacci numbers, greatest common divisors of 288—291
Fibonacci numbers, prime factors of 287 298—299
Fibonacci numbers, square/rectangle geometric deception 293—294
Fibonacci numbers, table of 294
Fibonacci numbers, Zeckendorf representation 295—296
Fibonacci sequence, defined 284 285
Fields medal 352 378
Finite continued fractions, convergents of 311—315 317—318
Finite continued fractions, defined 306—307
Finite continued fractions, linear Diophantine equation solutions 315—317
Finite continued fractions, rational numbers as 307—310
First day of the month, determining 125
First Principle of Finite Induction 2
Frederick the Great (1712—1786) 130 262
Frenicle de Bessy, Bernhard (1605—1675) 87 334—336
Friday the Thirteenth 126
Functions see also “Euler’s phi-function” “Multiplicative “Number-theoretic
Functions, (prime counting function) 53 371—378
Functions, greatest integer 117 119—121
Functions, Liouville -function 116
Functions, Mangoldt -function 116
Functions, Mobius -function 112—113 407—408
Functions, polynomial 55—57 71—72
Functions, prime-producing 55—57
Functions, zeta 373 376
Fundamental solution (Pell’s equation) 343—344
Fundamental theorem of algebra 63
Fundamental Theorem of Arithmetic 39—42
Galileo, Galilei (1564—1642) 218
Gauss, Carl Friedrich (1777—1855), approximation 374
Gauss, Carl Friedrich (1777—1855), 17-sided polygon discovery 62 238
Gauss, Carl Friedrich (1777—1855), biographical information 61—63
Gauss, Carl Friedrich (1777—1855), citations 163 169 242 273 354
Gauss, Carl Friedrich (1777—1855), congruence concept 63
Gauss, Carl Friedrich (1777—1855), motto 352
Gauss, Carl Friedrich (1777—1855), notation methods 94 132
Gauss, Carl Friedrich (1777—1855), on primitive roots 157 162
Gauss, Carl Friedrich (1777—1855), photo of 62
Gauss, Carl Friedrich (1777—1855), Quadratic Reciprocity Law work 186
Gauss’ lemma, citations 183
Gauss’ lemma, defined 179—181
Gauss’ lemma, Quadratic Reciprocity Law and 187
Gauss’ Theorem 141—143
Generalized Quadratic Reciprocity Law 192
Germain primes 182
Germain, Sophie (1776—1831) 182
Gershom, Levi ben (1288—1344) 258
Girard, Albert (1595—1632) 63 265 286
Goldbach conjecture 51—52
Goldbach, Christian (1690—1764), Euler and 130
Goldbach, Christian (1690—1764), Euler correspondence 51
Goldbach, Christian (1690—1764), on odd integers 57
Greatest common divisor see also “Euclidean algorithm”
Greatest common divisor, defined 21 24
Greatest common divisor, divisibility relations 19—21
Greatest common divisor, Fibonacci numbers 288—291
Greatest common divisor, least common multiple and 30
Greatest common divisor, linear combination representation 21—22
Greatest common divisor, more than two integers 30—31
Greatest common divisor, relatively prime numbers 22—23
Greatest integer function 117 119—121
Gregorian calendar 122—123
Gregory XIII, Pope (1572—1585) 122
Hadamard, Jacques-Salomon (1865—1963) 376
Hagis, Peter 231
Halley, Edmund (1656—1742) 92 261
Halley’s comet 92
Hardy — Littlewood conjecture 372—373 375
Hardy, Godfrey Harold (1877—1947), biographical information 349—351
Hardy, Godfrey Harold (1877—1947), on Goldbach conjecture 52
Hardy, Godfrey Harold (1877—1947), on Littlewood’s (x) approximation 377
Hardy, Godfrey Harold (1877—1947), photo of 350
Hardy, Godfrey Harold (1877—1947), Ramanujan collaboration 272 303—305 320
Hardy, Godfrey Harold (1877—1947), Riemann hypothesis and 376
Harmonic mean H(n) 225
Haselgrove, C. B. 353
Hellman, Martin 209
Highly composite numbers 305
Hilbert, David (1862—1943) 278 350
Hill cipher 201
Hill, Lester (1890—1961) 201
History of the Theory of Numbers (Dickson) 351
Holzmann, Wilhelm see “Xylander”
Hundred fowls problem 36—37
Hurwitz, Alexander 240 333
Hypothesis, induction 4
Iamblichus of Chalcis (c.250—c.330 a.d.) 234
Ideal numbers 254
Identification numbers, check digits for 72—73
| Identity function (f(n) = 1) 107 110
Incongruence modulo n 64 76
Indeterminate problems see “Puzzle problems”
Indicator see “Euler’s phi-function”
Indices (index of a relative to r) for solving congruences 164—166
Indices (index of a relative to r), defined 163—164
Indices (index of a relative to r), solvability criterion 166—167
Induction see “Mathematical induction”
Induction hypothesis 4
Induction step 4
Infinite continued fractions, representation 327—328 329 331—332
Infinite continued fractions, continued fraction algorithm 326—328
Infinite continued fractions, defined 319—322
Infinite continued fractions, e representation 328—329
Infinite continued fractions, irrational numbers as 323—326
Infinite continued fractions, irrational numbers representation 329—331 332
Infinite continued fractions, periodic 322
Infinite descent, Fermat’s method of 252 254 258 273 335
Infinite series, representation 306
Infinite series, e representation 328
Infinite series, partition function 305
Infinitude of primes of the form 8k - 1 182
Infinitude of primes, Dirichlet’s theorem and 54
Infinitude of primes, Euclid’s theorem and 45—48 53
Infinitude of primes, Euler’s phi-function and 134—135
Infinitude of primes, Euler’s zeta function and 373
Infinitude of primes, Fermat numbers and 238
Infinitude of primes, Fibonacci numbers and 291
Infinitude of primes, Legendre symbol and 177—178
Infinitude of primes, pseudoprimes 92
Integer factorization see “Factorization into primes”
Integers see “Numbers”
Integral solutions (Pell’s equation) 345—346
International Standard Book Numbers (ISBNs) 75
Introductio Arithmeticae (Nichomachus) 79 219
Inverse of a modulo n 11
Irrational numbers, as 329
Irrational numbers, 42
Irrational numbers, e as 328—329
Irrational numbers, infinite continued fractions as 323—326
Irrational numbers, zeta function values 373
ISBNs (International Standard Book Numbers) 75
Jacobi, Carl Gustav Jacob (1804—1851) 278
Jensen, K. L. 254
Julian calendar 122 123
k-perfect numbers 224
k-perfect numbers, cryptosystems using 209—212
k-perfect numbers, defined 208—209
Kanold, Hans-Joachim 231
Kayal, Neeraj 354
Keys for cryptosystems, automatic 200
Keys for cryptosystems, Elgamal system 213—214
Keys for cryptosystems, Merkle — Hellman knapsack system 210—211 212
Keys for cryptosystems, public-key systems 203—204 210—211 212 213—214
Keys for cryptosystems, RSA cryptosystem 203—204
Keys for cryptosystems, running 200
Keys for cryptosystems, Verman system 202
Keys for cryptosystems, Vigenere system 199 200
Kraitchik factorization method 100—101 360
Kraitchik, Maurice (1882—1957) 100
Kronecker, Leopold (1823—1891) 1 61
Kulp, G. W. 198—199
Kummer, Ernst Eduard (1810—1893) 254
Lagrange, Joseph-Louis (1736—1813), biographical information 261—263
Lagrange, Joseph-Louis (1736—1813), on odd integers 57
Lagrange, Joseph-Louis (1736—1813), Pell’s equation and 336
Lagrange, Joseph-Louis (1736—1813), photo of 262
Lagrange, Joseph-Louis (1736—1813), Wilson’s theorem and 94
Lagrange’s four-square theorem 263 273 277
Lagrange’s polynomial congruence theorem 152—154 162 170
Lambert, J. H. (1728—1777) 329
Lame, Gabriel (1795—1870), Euclidean algorithm work 28
Lame, Gabriel (1795—1870), Fermat’s Last Theorem work 254
Lame, Gabriel (1795—1870), Fibonacci numbers work 288
Landau, Edmund (1877—1938) 52
Lander, L. J. 279
Landry, Fortune 239 242
Laplace, Pierre-Simon de (1749—1827) 63
Lattice points, in Quadratic Reciprocity Law proof 186 187
leap years 123 124
Least absolute remainder 28
Least common multiple 29—30
Least nonnegative residues modulo n 64
Least positive primitive root 156 393
Lebesgue, V. A. 258
Legendre formula 118
Legendre symbol (alp), defined 175—176
Legendre symbol (alp), for odd integer a 183—184
Legendre symbol (alp), infinitude of primes and 177—178
Legendre symbol (alp), primitive roots and 181—182
Legendre symbol (alp), properties of 176—179
Legendre symbol (alp), quadratic congruences with composite moduli 189—190 192—195
Legendre, Adrien-Marie (1752—1833), , approximation 373—374
Legendre, Adrien-Marie (1752—1833), amicable pair discovery 234
Legendre, Adrien-Marie (1752—1833), biographical information 175
Legendre, Adrien-Marie (1752—1833), citations 273 376
Legendre, Adrien-Marie (1752—1833), continued fraction factoring algorithm 357
Legendre, Adrien-Marie (1752—1833), Fermat’s Last Theorem work 254
Legendre, Adrien-Marie (1752—1833), primitive roots for primes 162
Legendre, Adrien-Marie (1752—1833), Quadratic Reciprocity Law work 185—186
Lehman, R. S. 353
Lehmer, Derrick (1905—1991) 231
Leibniz, Gottfried Wilhelm (1646—1716) 87 94
Length of period (continued fraction expansions) 322 339
Lenstra, W. Hendrik, Jr. 241
Leonardo of Pisa see “Fibonacci”
Les Mecaniques de Galilee (Mersenne) 218
Levi ben Gershom (1288—1344) 258
Li (x) (logarithmic integral function) 374 376
Liber Abaci (Fibonacci) 283 284 285 306
Liber Quadratorum (Fibonacci) 283
Linear combination, defined 21
Linear congruences in two variables 81—82
Linear congruences, defined 76
Linear congruences, simultaneous 78—79
Linear congruences, single 76—78
Linear Diophantine equations, defined 32—33
Linear Diophantine equations, finite continued fractions for solving 315—318
Linear Diophantine equations, solvability criteria 33—35
Linear Diophantine equations, traditional word problems 35—37
Linnik, Y. V. (1915—1972) 278
Liouville -function 116
Liouville, Joseph (1809—1882) 278
Littlewood, John E. (1885—1977), approximation 377
Littlewood, John E. (1885—1977), Goldbach conjecture and 52 53
Littlewood, John E. (1885—1977), Hardy collaboration 350—351 372 375
Logarithmic integral function li (x) 374 376
Lucas numbers 301
Lucas sequence 6
Lucas — Lehmer test 230—231
Lucas, Edouard (1842—1891), Fermat numbers work 240
Lucas, Edouard (1842—1891), Fibonacci numbers and 284 288 302
Lucas, Edouard (1842—1891), primality tests 226 363
Lucas, Edouard (1842—1891), search for larger Mersenne primes 229
Lucas’s Converse of Fermat’s Theorem 363—364
L’Algebra Opera (Bombelli) 307
Mahaviracarya (9th century a.d.) 38
Manasse, M. S. 241
Mangoldt -function 116
Mathematical Classic (Chang) 36
Mathematical induction 1—6
Mathematical induction, binomial theorem proof 9—10
Mathematical induction, Fermat’s method of infinite descent 252 254 258 273 335
Mathematical induction, First Principle of Finite Induction 2
Mathematical induction, induction hypotheses 4
Mathematical induction, induction step 4
Mathematical induction, Second Principle of Finite Induction 5—6
McDaniel, Wayne 231
Measurement of a Circle (Archimedes) 331
Mecanique Analytique (Lagrange) 262
|
|
|
Ðåêëàìà |
|
|
|