| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
| Weintraub S. — Differential Forms. A complement to vector calculus | |
| Guillemin V., Pollack A. — Differential topology | 3 |
| Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 535 |
| Hunter J.K., Nachtergaele B. — Applied Analysis | 393 |
| Zeidler E. — Nonlinear Functional Analysis and its Applications IV: Applications to Mathematical Physic | 537 |
| Berger M. — A Panoramic View of Riemannian Geometry | 163 |
| Dorfman J.R. — Introduction to Chaos in Nonequilibrium Statistical Mechanics | 90, 183 |
| Arrowsmith D.K., Place C.M. — Dynamical systems. Differential equations, maps and chaotic behaviour | 132 |
| Olver P.J. — Equivalence, Invariants and Symmetry | 8, 12, 431 |
| Lee J.M. — Differential and Physical Geometry | 18, 85, 622 |
| Kodaira K. — Complex manifolds and deformation of complex structures | 38 |
| Felsager B. — Geometry, particles and fields | 515 |
| Baker A. — Matrix Groups: An Introduction to Lie Group Theory | 181 |
| Hicks N. — Notes on differential geometry | 9 |
| Agrachev A.A., Sachkov Yu.L. — Control theory from the geometric viewpoint | 3 |
| Millman R.S., Parker G.D. — Elements of Differential Geometry | 223 (5.4) |
| Tao G. — Adaptive control design and analysis | 537 |
| Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 74 |
| Brin M., Stuck G. — Introdution to dynamical system | 106 |
| Davies E. — Spectral Theory and Differential Operators | 142 |
| Hand L.N., Finch J.D. — Analytical Mechanics | 55 |
| Marmo G., Skagerstam B.S., Stern A. — Classical topology and quantum states | 131, 275, 279 |
| Gupta M.M., Jin L., Homma N. — Static and dynamic neural networks | 388 |
| Brieskorn E., Knorrer H. — Plane Algebraic Curves | I 126 |
| Moerdijk I., Mrcun J. — Introduction to Foliations and Lie Groupoids | 2 |
| Michor P.W. — Topics in Differential Geometry | 4 |
| Torretti R. — Relativity and Geometry | 258 |
| Sagan H. — Advanced Calculus of Real-Valued Functions of a Real Variable and Vector-Valued Functions of a Vector Variable | 492 |
| Milnor J.W. — Topology from the Differentiable Viewpoint | 1 |
| Kanatani K. — Statistical Optimization for Geometric Computation: Theory and Practice | 65 |
| Varadarajan V.S. — Lie Groups, Lie Algebras, and Their Representations | 15 |
| Gallot S., Hulin D. — Riemannian Geometry | 1.18. |
| Kolar I., Michor P.W., Slovak J. — Natural Operations in Differential Geometry | 5 |
| Smith P. — Explaining chaos | 138 |
| Pugh C.C. — Real Mathematical Analysis | 152, 289 |
| Montiel S., Ros A. — Curves and Surfaces | 43 |
| Boothby W.M. — An introduction to differentiable manifolds and riemannian geometry | 67 |
| Catanese F. (Ed) — Global Aspects of Complex Geometry | 133 |
| Weickert J. — Visualization and Processing of Tensor Fields: Proceedings of the Dagstuhl Workshop | 7 |
| Jost J., Simha R.T. — Compact Riemann Surfaces: An Introduction to Contemporary Mathematics | 2, 145, 152, 163, 184 |
| Devaney R.L. — An introduction to chaotic dynamical systems | 9, 170 |
| Naber G.L. — Topology, Geometry and Gauge Fields | 2 |
| Poeschel J. — Inverse Spectral Theory | 149 |
| Lawrynowicz J., Krzyz J. — Quasiconformal Mappings in the Plane: Parametncal Methods | 4 |
| Rudin W. — Functional analysis | 255 |
| Toda M., Kubo R., Saito N. — Statistical Physics I: Equilibrium Statistical Mechanics, Vol. 1 | 195 |
| Kobayashi S., Nomizu K. — Foundations of Differential Geometry, Volume 2 | I-9 |
| Brickell F., Clark R.S. — Differentiable Manifolds | 13, 21 |
| Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 416 |
| Cantwell B.J., Crighton D.G. (Ed), Ablowitz M.J. (Ed) — Introduction to Symmetry Analysis | 13, 23, 446 |
| Helgason S. — Differential Geometry, Lie Groups and Symmetric Spaces | 2, 22 |
| Hale J.K., Kocak H. — Dynamics and Bifurcations | 61, 186 |
| Morita S. — Geometry of differential forms | 5, 24 |
| Frolov V.P., Novikov I.D. — Black Hole Physics: Basic Concepts and New Developments | 625 |
| Golubitsky M., Guillemin V. — Stable Mappings and Their Singularities | 7 |
| Carmo M.P. — Differential geometry of curves and surfaces | 74 |
| Morita Sh. — Geometry of Differential Forms | 5, 24 |
| Bratteli O., Robinson D.W. — Operator Algebras and Quantum Statistical Mechanics (vol. 1) | 159 |
| Bleecker D. — Gauge Theory and Variational Principles | 7 |
| O'Neill B. — Elementary differential geometry | 38, 40(Ex. 11), 161 |
| Borel A. — Linear algebraic groups | 24.7 |
| Thirring W.E. — Classical Mathematical Physics: Dynamical Systems and Field Theories | 19 |
| Aubin T. — Nonlinear Analysis on Manifolds: Monge-Ampere Equations | 72 |
| De Felice F., Clarke C.J.S. — Relativity on curved manifolds | 20, 60, 330 |
| Thirring W.E. — Course in Mathematical Physics: Classical Dynamical System, Vol. 1 by Walter E. Thirring | 15 |
| Brocker Th., Dieck T.T. — Representations of Compact Lie Groups | 40 |
| Intriligator M.D., Arrow K.J. — Handbook of Mathematical Economics (vol. 1) | 95, 356 |
| do Carmo M.P. — Riemannian geometry | 10 |
| O'Neill B. — Semi-Riemannian Geometry: With Applications to Relativity | 55 |
| Dubrovin B.A., Fomenko A.T., Novikov S.P. — Modern Geometry - Methods and Applications. Part 1. The Geometry of Surfaces, Transformation Groups and Fields | 207 |
| Spivak M. — A Comprehensive Introduction to Differential Geometry (Vol.1) | 30 |
| Aoki K. — Nonlinear dynamics and chaos in semiconductors | 139 |
| Munkres J.R. — Analysis on manifolds | 147 |
| Kirillov A.A. — Elements of the Theory of Representations | 64 |
| Matveev S.V. — Lectures on Algebraic Topology | 2 |
| Sternberg Sh. — Lectures on Differential Geometry | 43 |
| Tamura I. — Topology of lie groups, I and II | 19, 44, 63 |
| Bratteli O., Robinson D.W. — Operator Algebras and Quantum Statistical Mechanics (vol. 2) | 159 |
| Gambini R., Pullin J. — Loops, Knots, Gauge Theories and Quantum Gravity | 22, 46, 47, 79, 169 |
| Wawrzynczyk A. — Group representations and special functions | 17 |
| O'Neill B. — The Geometry of Kerr Black Holes | 3 |
| Zeidler E. — Nonlinear Functional Analysis and Its Applications: Part 1: Fixed-Point Theorems | 171 |
| Straumann N. — General relativity and relativistic astrophysics | 5, 6 |
| Price J.F. — Lie groups and compact groups | 7 |
| Hatfield B. — Quantum field theory of point particles and strings | 543 |
| Arwini K. — Information Geometry: Near Randomness and Near Independence | 22 |
| Schlichenmaier M. — An Introduction to Riemann Surfaces, Algebraic Curves and Moduli Spaces | 8 |
| Narasimhan R. — Analysis on Real and Complex Manifolds | 4, 54 |
| Sachs R.K., Wu H. — General relativity for mathematicians | 3 |
| Boothby W.M. — An Introduction to Differentiable Manifolds and Riemannian Geometry | 67 |
| Bishop R.L., Crittenden R.J. — Geometry of manifolds | 11 |
| Bergmann P.G., De Sabbata V., Gillies G.T. — Spin in Gravity: Is It Possible to Give an Experimental Basis to Torsion? | 163 |
| Friedlander F.G. — The Wave Equation on a Curved Space-Time | 4 |
| Lee J.M. — Differential and physical geometry | 18, 85, 622 |
| Browder A. — Mathematical Analysis: An Introduction | 254 |
| Alekseevskij D.V., Vinogradov A.M., Lychagin V.V. — Geometry I: Basic Ideas and Concepts of Differential Geometry | 58 |
| Morita S. — Geometry of Differential Forms | 5, 24 |
| Goffman C. — Calculus of several variables | 134 |
| Brickell F., Clark R.S. — Differentiable manifolds | 13, 21 |
| Hermann R. — Differential geometry and the calculus of variations | 25, 28, 39, 51 |
| Duistermaat J.J, Kolk J.A.C. — Distributions: theory and applications | 78 |
| Runst T. — Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations | 18, 73 |
| Aliprantis C. — Principles of real analysis | 388 |
| Kinsey L.C. — Topology of surfaces | 233 |
| Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 74, 115, 547 |
| Gallavotti G. — Foundations of fluid mechanics | 248, 315, 345 |
| Marathe K.B., Martucci G. — The mathematical foundations of gauge theories | 3 |
| Devaney R.L., Keen L. — Chaos and Fractals: The Mathematics Behind the Computer Graphics | 115 |
| Audin M. — Geometry | 85 |
| Kobayashi S., Nomizu K. — Foundations of Differential Geometry, Volume 1 | 9 |
| Audin M. — Geometry | 85 |
| van der Giessen E., Wu Theodore Y.-T., Hassan A. — Advances in Applied Mechanics. Volume 38 | 19 |
| Triebel H. — Theory of Function Spaces | 173 |
| Schulz F., Dold A. (Ed), Eckmann B. (Ed) — Regularity Theory for Quasilinear Elliptic Systems and Monge-Ampere Equations in Two Dimensions | 70, 80, 94 |
| Porteous I.R. — Clifford Algebras and the Classical Groups | 211, 218 |
| de Leon M., Rodrigues P.R. — Methods of differential geometry in analytical mechanics | 4, 8 |
| Hsiung C.-C. — A first course in differential geometry | 43 |
| Pommaret J.F. — Systems of partial differential equations and Lie pseudogroups | 6.1—18 |
| Loomis L.H., Sternberg S. — Advanced calculus | 376 |
| Tuynman G.M. — Supermanifolds and Supergroups: Basic Theory | 128 |
| Hirsch M.W., Smale S. — Differential Equations, Dynamical Systems, and Linear Algebra | 242 |
| Jajte R. — Strong Limit Theorems in Non-Commutative Probability | 11 |
| Frankel T. — The geometry of physics: an introduction | 27 |
| Naber G.L. — Topology, Geometry and Gauge Fields | 2 |
| Vilenkin N.Ja., Klimyk A.U. — Representation of Lie Groups and Special Functions: Volume 1: Simplest Lie Groups, Special Functions and Integral Transforms | 21 |
| Zeidler E. — Applied Functional Analysis: Applications to Mathematical Physics | 435 |
| Berezin F.A., Kirillov A.A. (ed.) — Introduction to Superanalysis | 62 |
| Lasota A., Mackey M.C. — Probabilistic Properties of Deterministic Systems | 52 |
| Israel W. (ed.) — Relativity, astrophysics and cosmology | 298 |
| Zeidler E. — Oxford User's Guide to Mathematics | 291 |
| Stanley L. — Design sensitivity analysis: computational issues of sensitivity equation methods | 8, 25 |
| Arnold V.I. — Ordinary Differential Equations | 6 |
| Stoll W. — Value Distribution Of Holomorphic Maps Into Compact Complex Manifolds | 31 |
| Israel W. — Relativity, Astrophysics and Cosmology | 298 |
| Vidyasagar M. — Nonlinear systems analysis | 377 |
| Kloeden P/, Platen E., Schurz H. — Numerical solution of SDE through computer experiments | 222 |
| Vaisala J. — Lectures On N-Dimensional Quasiconformal Mappings | 46 |
| Spivak M. — Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus | 109 |
| Jablan S., Sazdanovic R. — LinKnot: knot theory by computer | 11 |
| Greub W., Halperin S., Vanstone R. — Connections, curvature, and cohomology. Volume 1 | 12, 24, 35ff. |
| Ruelle D. — Elements of Differentiable Dynamics and Bifurcation Theory | 6 |
| Milnor J.W., Stasheff J.D. — Characteristic Classes. (Am-76), Vol. 76 | 7, 9ff, 14, 42, 48, 115f, 151, 248, 250 |
| Frankel T. — The geometry of physics: An introduction | 27 |
| Lord E., Wilson C. — The Mathematical Description of Shape and Form (Mathematics and Its Applications) | 35 |
| Necas J., Hlavacek I. — Mathematical Theory of Elastic and Elastico-Plastic Bodies: An Introduction | 29 |
| Schutz B. — Geometrical Methods in Mathematical Physics | 30, 73, 92, 188 |
| Klingenberg W. — A Course in Differential Geometry (Graduate Texts in Mathematics) | 4 |
| Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 74, 115, 547 |
| Thirring W., Harrell E.M. — Classical mathematical physics. Dynamical systems and field theory | 19 |
| Nash C., Sen S. — Topology and geometry for physicists | 49, 221 |
| Castillo J. — Mathematical Aspects of Numerical Grid Generation | 109, 123, 129 |
| Morita S. — Geometry of Differential Forms (Translations of Mathematical Monographs, Vol. 201) | 5, 24 |
| Jost J. — Bosonic Strings: A mathematical treatment | 83 |