Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Dorfman J.R. — Introduction to Chaos in Nonequilibrium Statistical Mechanics
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Introduction to Chaos in Nonequilibrium Statistical Mechanics
Àâòîð: Dorfman J.R.
Àííîòàöèÿ: This book is an introduction to the applications in nonequilibrium statistical mechanics of chaotic dynamics, and also to the use of techniques in statistical mechanics important for an understanding of the chaotic behaviour of fluid systems. The fundamental concepts of dynamical systems theory are reviewed and simple examples are given. Advanced topics including SRB and Gibbs measures, unstable periodic orbit expansions, and applications to billiard-ball systems, are then explained. The text emphasises the connections between transport coefficients, needed to describe macroscopic properties of fluid flows, and quantities, such as Lyapunov exponents and Kolmogorov-Sinai entropies, which describe the microscopic, chaotic behaviour of the fluid. Later chapters consider the roles of the expanding and contracting manifolds of hyperbolic dynamical systems and the large number of particles in macroscopic systems. Exercises, detailed references and suggestions for further reading are included.
ßçûê:
Ðóáðèêà: Ôèçèêà /Òåðìîäèíàìèêà, ñòàòèñòè÷åñêàÿ ôèçèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1999
Êîëè÷åñòâî ñòðàíèö: 287
Äîáàâëåíà â êàòàëîã: 06.12.2004
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Absolutely continuous measure 132
Anosov system 17 122 123 125 126 148 183 186 228 232 234
Arnold cat map 114
Arnold cat map and irreversibility 228
Arnold cat map, ergodicity and mixing property 115
Arnold cat map, H-function 231
Arnold cat map, H-theorem 115 228
Arnold cat map, KS entropy 127
Arnold cat map, Lyapunov exponents 114
Arnold cat map, measure-preserving property 112
Arnold cat map, periodic points 204
Arnold cat map, stable and unstable manifolds 114 115 228
Arnold cat map, topological entropy 207
Arnold cat map, topological zeta-function 207 (see also “Toral automorphism”)
Arnold cat mapas Anosov diffeomorphism 124
Arrow of time 4 104
Attractor 158 160 163
Attractor, Axiom-A 124
Attractor, hyperbolic 176 177
Axiom-A system 17 124
Axiom-A system, non-wandering set of points 124
Baker’s transformation 89
Baker’s transformation and irreversibility 94 108
Baker’s transformation as Bernoulli shift 96
Baker’s transformation, area-preserving property 104
Baker’s transformation, Bernoulli sequences 94 96 203
Baker’s transformation, Bogoliubov’s arguments 94 110
Baker’s transformation, Boltzmann equation 90—93
Baker’s transformation, cylinder set 97
Baker’s transformation, dyadic (bi-infinite sequence) representation 95 96
Baker’s transformation, dynamical partition function 190 215
Baker’s transformation, ergodicity and mixing property 90 93 104—106 108
Baker’s transformation, Gibbs measure 190
Baker’s transformation, H-theorem 90—92
Baker’s transformation, invariant measure 105
Baker’s transformation, KS entropy 121 122 127
Baker’s transformation, Lyapunov exponents 103 104 122
Baker’s transformation, Markov partition 124 125
Baker’s transformation, measure-preserving property 89
Baker’s transformation, partition of the unit square 119—121
Baker’s transformation, periodic points 98 109 130 204
Baker’s transformation, Probenius — Perron equation 90
Baker’s transformation, separated set 190
Baker’s transformation, stable and unstable manifolds 105 106 124
Baker’s transformation, symbolic dynamics 96 120
Baker’s transformation, topological entropy 190 207
Baker’s transformation, topological pressure 192 215
Baker’s transformation, topological zeta-function 207
BBGKY hierarchy equations 51 53 232
Bernoulli shift/process 104 109 118 143
Bernoulli system 122
Bijection 130
Billiard systems 240—242 253
Billiard systems, dispersing/semi-dispersing 251
Billiard systems, ergodicity and mixing property 13 73 242
Billiard systems, stable and unstable manifolds 241
Birkhoff’s individual ergodic theorem 11 62 63 177 246
Birkhoff’s individual ergodic theorem, Hopf’s proof 11
Boltzmann (transport) equation 30 40 227
Boltzmann (transport) equation, assumption of molecular chaos 3 25
Boltzmann (transport) equation, Chapman — Enskog method 39
Boltzmann (transport) equation, collision cylinder 24 25 27
Boltzmann (transport) equation, direct collision 22 26—28 32
Boltzmann (transport) equation, free-streaming term 22
Boltzmann (transport) equation, gain term 22 29
Boltzmann (transport) equation, impact parameter 26—29 242
Boltzmann (transport) equation, loss term 22 24
Boltzmann (transport) equation, restituting collision 22 27 28 32 248
Boltzmann (transport) equation, Sonine polynomials 43
Boltzmann (transport) equation, wall (collision) term 22 31
Box-Counting Dimension 144
Bunimovich stadium 253 254
Cellular automata lattice gases (CALG) 217
Cellular automata lattice gases (CALG), exclusion principle 218
Cellular automata lattice gases (CALG), Frisch — Hasslacher — Pomeau (FHP) model 218
Cellular automata lattice gases (CALG), stochastic/deterministic 218
Center subspace/manifold 123
Chaotic hypothesis 234
Chapman — Enskog method 39 41
Chapman — Enskog method for Boltzmann equation 39 83
Chapman — Enskog method for Liouville equation 79
Chapman — Kolmogorov equation 220
Characteristic function 50 64 68 70
Cumulative (distribution) function 168 172
Diffeomorphism 90 183
Diffusion coefficient 40 45 46 152
Diffusion coefficient and fractal structure 195 201
Diffusion coefficient and mean square displacement 46 86
Diffusion coefficient and Takagi function 200
Diffusion coefficient for one-dimensional maps 196
Diffusion coefficient, Einstein relation 46
Diffusion coefficient, generating function method 211 214
Diffusion coefficient, Green Kubo expression 83 86
Diffusion coefficient, time-dependent 86
Diffusion coefficient, using periodic orbit expansion 207
Diffusion coefficientand velocity autocorrelation-function 86
Diffusion equation 40 46 152
Dynamical chaos 12 240
Dynamical partition function 149 150 183—187 192 215
Dynamical phase transition 192 224
Ehrenfest urn model 56
Ehrenfest urn model, Loschmidt’s paradox 56
Ehrenfest urn model, Zermelo’s paradox 56
Ehrenfest wind-tree model 47 48 247
Ergodic hypothesis 13
Ergodicity and Gibbs mixing 68 69
Ergodicity and metric indecomposability 66 68—70
Ergodicity and random perturbations 61 62
Ergodicity for hyperbolic systems 148
Ergodicity for periodic orbits 208
Ergodicity of sequences of numbers 65 66
Ergodicity, Birkhoff’s theorem 11 62 63 177 246
Ergodicity, equal-times-in-equal-areas rule 5 7 8 62 64 65
Ergodicity, ergodic hypothesis 5 7 8 58 60 62
Ergodicity, escape-rate formalism 15 16 118 136 138 141 149 153 176 186
Ergodicity, Hopf’s method 108
Ergodicity, infinite/long-time limit/average 6 7 58—60 62 63 105 131
Extended Lorentz — Boltzmann equation 246 249
Fermi — Pasta — Ulam model 12
Fokker — Planck equation 11
Fokker — Planck equation and Green — Kubo formulae 82
Fractal set 144
Fractal set, box-counting dimension 144 145
Fractal set, Cantor set 137 139 142—144 146
Fractal set, information dimension 160
Fractal set, multifractal 166 168
Fractal set, self-similarity 146
Fredholm determinant method 210 211
Frobenius — Perron equation 129 134 168 175 180 259
Frobenius — Perron operator 134 198 201 203 208 213 259
Gallavotti — Cohen fluctuation formula 14 181 182
Generating partition 121
Gibbs measure 16 160 164 183 185 188 210 214 215
Gibbs mixing 9 67
Gibbs mixing and ergodicity 68 69
Green — Kubo formulae 12
Green — Kubo formulae for maps 195 196
Green — Kubo formulae, diffusion coefficient 83 86
Green — Kubo formulae, electrical conductivity 79
Green — Kubo formulae, fractal forms 197
Green — Kubo formulae, intermediate scattering function 85
Green — Kubo formulae, linear response derivation 75
Green — Kubo formulae, Liouville operator 76
Green — Kubo formulae, long-time tails/algebraic decay 218 233 237
Green — Kubo formulae, time-correlation function 75 79
Green — Kubo formulae, time-displacement operator 77
Green — Kubo formulae, using Fokker — Planck equation 82
Green — Kubo formulae, van Kampen’s objections 79
H-Theorem 2 3 31—33 115 227 228
H-theorem, detailed balance 32
H-theorem, H-function 31
Hausdorff dimension 146 147
Homoclinic and heteroclinic tangles 10 142
Hyperbolic system 13 17 122—124 148 152 177 187—189 191 192 203 205 227 228 232 234 236 237 241 242
Invariant measure 51 59 62 63 123 132 163 164 170 176
Invariant tori 10
Jacobian derivative of a map 129 165 180 209 214
Jump function 198
Kac ring model 34 39 217 247 254
Kac ring model and irreversibility 36
Kac ring model, Lifshitz tails 38
Kac ring model, Loschmidt’s paradox 36
Kac ring model, Poincare recurrence 35
Kac ring model, Zermelo’s paradox 36 38
Kac ring model, ‘anti-Boltzmann’ behavior 38
Kadanoff — Tang formula 209
Kolmogorov — Arnold — Moser (KAM) theorem 12
Kolmogorov — Sinai (KS) entropy 118 119 132 137 150 234
Langevin equation 11 233
Law of Universal Return 54
Lebesgue singular function 170—173
Lifshitz tails 38
Liouville equation 49 70
Liouville equation, volume-preserving property 51 54
Liouville measure 51 123
Lorentz gas 154 161 181 211 215 241 247
Lorentz gas as a billiard system 240
Lorentz gas, dilute, random 246 249
Lorentz gas, ergodicity and mixing property 240 246
Lorentz gas, Grad limit 237
Lorentz gas, Lyapunov exponents 240 244 246 251
Lorentz gas, periodic orbit 212
Lorentz gas, separation of nearby trajectories 72 73
Lorentz lattice gases 218
Lorentz lattice gases, BBGKY hierarchy equations 221
Lorentz lattice gases, Boltzmann equation 221
Lorentz lattice gases, Chapman — Kolmogorov equation for 220
Lorentz lattice gases, dynamical partition function 222 223
Lorentz lattice gases, thermodynamic formalism 222
Lorentz lattice gases, topological pressure 223—226
Loschmidt’s paradox 2 36 56
Lyapunov exponent 9 100 101
Lyapunov exponent and information production 119
Lyapunov exponent and separation of nearby initial states 101
Lyapunov exponent for a periodic orbit 209
Lyapunov exponent, symplectic condition 104 114 159 186 241
Lyapunov exponent, using Boltzmann equation 240
Lyapunov exponent, using Probenius — Perron equation 130
Macroscopic and microscopic chaos 238
Manifolds/directions, stable and unstable 105 106 108—110 114 115 119 123 124 142 160 165 177 203 227 228 232 241
Markov partition 122 124 125 176
Markov partition and KS entropy 124 125
Markov partition and Markov process 125 126
Markov partition and Markov transition matrix 126
Markov partitionand Pesin’s theorem 126
Maxwell — Boltzmann distribution function 2 33 40 41 65
Measure/volume-preserving transformation 134
Mechanical problem of statistical mechanics 4
Metric indecomposability 68—70
Molecular chaos 240
Molecular chaos, assumption of 3 25
Multiplicative ergodic theorem of Oseledets 102
Navier — Stokes equations 233 238
Non-exponential separation of phase points 240
Nonequilibrium stationary states 14 157 201
Open systems/absorbing boundaries 129 136 153 186 188
Partition of a set 119
Periodic orbit expansion 16 152 178 203
Periodic orbit/point 69 124 126 205
Periodic orbit/point, prime 205
Periodic orbit/point, reducible 205
Pesin’s theorem 126
Poincare recurrence 65
Poincare recurrence, quantum systems 55 57
Poincare recurrence, recurrence theorem 2 6 35 54 55 124 241
Poincare recurrence, recurrence time 3 36 55 235 236
Quantum chaos 11 16 203 262—264
Random matrices 262
Random perturbations 61 236 262
Random perturbations and ergodicity 61 62
Repeller 16 138 139 142 146 154 163 164 251
Repeller, forward 142
Repeller, invariant 143 145
Repeller, KS entropy 139
Repeller, Lyapunov exponents 139 147
Repeller, time-reversed 143
Rotation map 64
Rotation map, ergodicity 64 65
Rotation map, KS entropy 122
Rotation map, partition of the unit circle 122
Ruelle zeta-function 214
Ruelle — Pollicott resonances 16 201 202 259
Ruelle’s inequality 126
Second law of thermodynamics 1 5 33 55 74
Second law of thermodynamics, Clausius form 30
Separated set 122 189 203 215
Shear flow 181 260
Sinai — Ruelle — Bowen (SRB) measure 15 71 126 160 163 164 170 175
Sinai — Ruelle — Bowen (SRB) measure, Hausdorff dimension 175
Sinai — Ruelle — Bowen (SRB) measure, Hausdorff dimension, Kaplan — Yorke formula 174
Sinai — Ruelle — Bowen (SRB) measure, Hausdorff dimension, Young’s formula 173 175
Sinai — Ruelle — Bowen (SRB) theorem 176 177
Sinai’s formula 242
Smale horseshoe 142—145
Smale horseshoe, escape rate 142
Sonine polynomials 43
Spatiotemporal chaos 18
Stosszahlansatz 25 29 31 33—35 37 47 232 235 237
Tagged particle diffusion 39 75
Tagged particle diffusion, Boltzmann equation 40
Tagged particle diffusion, Chapman — Enskog method 39 41
Tagged particle diffusion, cumulant expansion 85
Tagged particle diffusion, diffusion coefficient 40 45 46
Tagged particle diffusion, diffusion equation 40 46
Tagged particle diffusion, generating function for moments 85
Tagged particle diffusion, Green — Kubo formula 83
Tagged particle diffusion, probability current 41 42
Tagged particle diffusion, probability density 40 84
Tagged particle diffusion, Sonine polynomials 43
Tagged particle diffusion, ‘hydrodynamic’ stage 41
Tagged particle diffusion, ‘kinetic’ stage 41
Takagi function 200—202
Thermodynamic formalism for chaos 13 150 183 215 218
Thermodynamic/large-system limit 86 234—238
Thermostatted system 163 164 167 172 174 251
Thermostatted system, coarse-grained entropy 178
Thermostatted system, diffusion coefficient 154
Thermostatted system, entropy production 158 178 179
Thermostatted system, friction coefficient 155 158
Thermostatted system, Gaussian thermostat method 15 154 156 216
Thermostatted system, Liouville equation 156 157
Thermostatted system, macroscopic escape rate 153
Thermostatted system, microscopic escape rate 154
Time-reversal operator 167
Time-reversal operator for a map 167
Toral automorphism 111 112 114 203—205 207 228
Tpological entropy 185 190 207
Tpological pressure 149 150 183 185 187 190 191
Tpological zeta-function 205—207
Tpological zeta-function and Riemann zeta-function 206
Transitive system 123
Virial/cluster expansions 11 12
Viscous flow 154 261
Weak limit 71
Zermelo’s paradox 2 36 38 56
Ðåêëàìà