Àâòîðèçàöèÿ 
		         
		        
					
 
		          
		        
			          
		        
			        Ïîèñê ïî óêàçàòåëÿì 
		         
		        
			        
					 
		          
		        
			          
			
			         
       		 
			          
                
                    
                        
                     
                  
		
			          
		        
			          
		
            
	     
	    
	    
            
		
                    Dorfman J.R. — Introduction to Chaos in Nonequilibrium Statistical Mechanics 
                  
                
                    
                        
                            
                                
                                    Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå    Íàøëè îïå÷àòêó? 
 
                                
                                    Íàçâàíèå:   Introduction to Chaos in Nonequilibrium Statistical MechanicsÀâòîð:   Dorfman J.R.  Àííîòàöèÿ:  This book is an introduction to the applications in nonequilibrium statistical mechanics of chaotic dynamics, and also to the use of techniques in statistical mechanics important for an understanding of the chaotic behaviour of fluid systems. The fundamental concepts of dynamical systems theory are reviewed and simple examples are given. Advanced topics including SRB and Gibbs measures, unstable periodic orbit expansions, and applications to billiard-ball systems, are then explained. The text emphasises the connections between transport coefficients, needed to describe macroscopic properties of fluid flows, and quantities, such as Lyapunov exponents and Kolmogorov-Sinai entropies, which describe the microscopic, chaotic behaviour of the fluid. Later chapters consider the roles of the expanding and contracting manifolds of hyperbolic dynamical systems and the large number of particles in macroscopic systems. Exercises, detailed references and suggestions for further reading are included.
ßçûê:  Ðóáðèêà:  Ôèçèêà /Òåðìîäèíàìèêà, ñòàòèñòè÷åñêàÿ ôèçèêà /Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ:  Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö ed2k:   ed2k stats Ãîä èçäàíèÿ:  1999Êîëè÷åñòâî ñòðàíèö:  287Äîáàâëåíà â êàòàëîã:  06.12.2004Îïåðàöèè:  Ïîëîæèòü íà ïîëêó  |
	 
	Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà  | Ñêîïèðîâàòü ID 
                                 
                             
                        
                     
                 
                                                                
			          
                
                    Ïðåäìåòíûé óêàçàòåëü 
                  
                
                    
                        Absolutely continuous measure 132 Anosov system 17 122 123 125 126 148 183 186 228 232 234 Arnold cat map 114 Arnold cat map and irreversibility 228 Arnold cat map, ergodicity and mixing property 115 Arnold cat map, H-function 231 Arnold cat map, H-theorem 115 228 Arnold cat map, KS entropy 127 Arnold cat map, Lyapunov exponents 114 Arnold cat map, measure-preserving property 112 Arnold cat map, periodic points 204 Arnold cat map, stable and unstable manifolds 114 115 228 Arnold cat map, topological entropy 207 Arnold cat map, topological zeta-function 207 (see also “Toral automorphism”) Arnold cat mapas Anosov diffeomorphism 124 Arrow of time 4 104 Attractor 158 160 163 Attractor, Axiom-A 124 Attractor, hyperbolic 176 177 Axiom-A system 17 124 Axiom-A system, non-wandering set of points 124 Baker’s transformation 89 Baker’s transformation and irreversibility 94 108 Baker’s transformation as Bernoulli shift 96 Baker’s transformation, area-preserving property 104 Baker’s transformation, Bernoulli sequences 94 96 203 Baker’s transformation, Bogoliubov’s arguments 94 110 Baker’s transformation, Boltzmann equation 90—93 Baker’s transformation, cylinder set 97 Baker’s transformation, dyadic (bi-infinite sequence) representation 95 96 Baker’s transformation, dynamical partition function 190 215 Baker’s transformation, ergodicity and mixing property 90 93 104—106 108 Baker’s transformation, Gibbs measure 190 Baker’s transformation, H-theorem 90—92 Baker’s transformation, invariant measure 105 Baker’s transformation, KS entropy 121 122 127 Baker’s transformation, Lyapunov exponents 103 104 122 Baker’s transformation, Markov partition 124 125 Baker’s transformation, measure-preserving property 89 Baker’s transformation, partition of the unit square 119—121 Baker’s transformation, periodic points 98 109 130 204 Baker’s transformation, Probenius — Perron equation 90 Baker’s transformation, separated set 190 Baker’s transformation, stable and unstable manifolds 105 106 124 Baker’s transformation, symbolic dynamics 96 120 Baker’s transformation, topological entropy 190 207 Baker’s transformation, topological pressure 192 215 Baker’s transformation, topological zeta-function 207 BBGKY hierarchy equations 51 53 232 Bernoulli shift/process 104 109 118 143 Bernoulli system 122 Bijection 130 Billiard systems 240—242 253 Billiard systems, dispersing/semi-dispersing 251 Billiard systems, ergodicity and mixing property 13 73 242 Billiard systems, stable and unstable manifolds 241 Birkhoff’s individual ergodic theorem 11 62 63 177 246 Birkhoff’s individual ergodic theorem, Hopf’s proof 11 Boltzmann (transport) equation 30 40 227 Boltzmann (transport) equation, assumption of molecular chaos 3 25 Boltzmann (transport) equation, Chapman — Enskog method 39 Boltzmann (transport) equation, collision cylinder 24 25 27 Boltzmann (transport) equation, direct collision 22 26—28 32 Boltzmann (transport) equation, free-streaming term 22 Boltzmann (transport) equation, gain term 22 29 Boltzmann (transport) equation, impact parameter 26—29 242 Boltzmann (transport) equation, loss term 22 24 Boltzmann (transport) equation, restituting collision 22 27 28 32 248 Boltzmann (transport) equation, Sonine polynomials 43 Boltzmann (transport) equation, wall (collision) term 22 31 Box-Counting Dimension 144 Bunimovich stadium 253 254 Cellular automata lattice gases (CALG) 217 Cellular automata lattice gases (CALG), exclusion principle 218 Cellular automata lattice gases (CALG), Frisch — Hasslacher — Pomeau (FHP) model 218 Cellular automata lattice gases (CALG), stochastic/deterministic 218 Center subspace/manifold 123 Chaotic hypothesis 234 Chapman — Enskog method 39 41 Chapman — Enskog method for Boltzmann equation 39 83 Chapman — Enskog method for Liouville equation 79 Chapman — Kolmogorov equation 220 Characteristic function 50 64 68 70 Cumulative (distribution) function 168 172 Diffeomorphism 90 183 Diffusion coefficient 40 45 46 152 Diffusion coefficient and fractal structure 195 201 Diffusion coefficient and mean square displacement 46 86 Diffusion coefficient and Takagi function 200 Diffusion coefficient for one-dimensional maps 196 Diffusion coefficient, Einstein relation 46 Diffusion coefficient, generating function method 211 214 Diffusion coefficient, Green Kubo expression 83 86 Diffusion coefficient, time-dependent 86 Diffusion coefficient, using periodic orbit expansion 207 Diffusion coefficientand velocity autocorrelation-function 86 Diffusion equation 40 46 152 Dynamical chaos 12 240 Dynamical partition function 149 150 183—187 192 215 Dynamical phase transition 192 224 Ehrenfest urn model 56 Ehrenfest urn model, Loschmidt’s paradox 56 Ehrenfest urn model, Zermelo’s paradox 56 Ehrenfest wind-tree model 47 48 247 Ergodic hypothesis 13 Ergodicity and Gibbs mixing 68 69 Ergodicity and metric indecomposability 66 68—70 Ergodicity and random perturbations 61 62 Ergodicity for hyperbolic systems 148 Ergodicity for periodic orbits 208 Ergodicity of sequences of numbers 65 66 Ergodicity, Birkhoff’s theorem 11 62 63 177 246 Ergodicity, equal-times-in-equal-areas rule 5 7 8 62 64 65 Ergodicity, ergodic hypothesis 5 7 8 58 60 62 Ergodicity, escape-rate formalism 15 16 118 136 138 141 149 153 176 186 Ergodicity, Hopf’s method 108 Ergodicity, infinite/long-time limit/average 6 7 58—60 62 63 105 131 Extended Lorentz — Boltzmann equation 246 249 Fermi — Pasta — Ulam model 12 Fokker — Planck equation 11 Fokker — Planck equation and Green — Kubo formulae 82 Fractal set 144 Fractal set, box-counting dimension 144 145 Fractal set, Cantor set 137 139 142—144 146 Fractal set, information dimension 160 Fractal set, multifractal 166 168 Fractal set, self-similarity 146 Fredholm determinant method 210 211 Frobenius — Perron equation 129 134 168 175 180 259 Frobenius — Perron operator 134 198 201 203 208 213 259 Gallavotti — Cohen fluctuation formula 14 181 182 Generating partition 121 Gibbs measure 16 160 164 183 185 188 210 214 215 Gibbs mixing 9 67 Gibbs mixing and ergodicity 68 69 Green — Kubo formulae 12 Green — Kubo formulae for maps 195 196 Green — Kubo formulae, diffusion coefficient 83 86 Green — Kubo formulae, electrical conductivity 79 Green — Kubo formulae, fractal forms 197 Green — Kubo formulae, intermediate scattering function 85 Green — Kubo formulae, linear response derivation 75 Green — Kubo formulae, Liouville operator 76 Green — Kubo formulae, long-time tails/algebraic decay 218 233 237 Green — Kubo formulae, time-correlation function 75 79 Green — Kubo formulae, time-displacement operator 77 Green — Kubo formulae, using Fokker — Planck equation 82 Green — Kubo formulae, van Kampen’s objections 79 H-Theorem 2 3 31—33 115 227 228 H-theorem, detailed balance 32 H-theorem, H-function 31 Hausdorff dimension 146 147 Homoclinic and heteroclinic tangles 10 142 Hyperbolic system 13 17 122—124 148 152 177 187—189 191 192 203 205 227 228 232 234 236 237 241 242 Invariant measure 51 59 62 63 123 132 163 164 170 176 Invariant tori 10 Jacobian derivative of a map 129 165 180 209 214 Jump function 198 Kac ring model 34 39 217 247 254 Kac ring model and irreversibility 36 Kac ring model, Lifshitz tails 38 Kac ring model, Loschmidt’s paradox 36 Kac ring model, Poincare recurrence 35 Kac ring model, Zermelo’s paradox 36 38 Kac ring model, ‘anti-Boltzmann’ behavior 38 Kadanoff — Tang formula 209 Kolmogorov — Arnold — Moser (KAM) theorem 12 Kolmogorov — Sinai (KS) entropy 118 119 132 137 150 234 Langevin equation 11 233 Law of Universal Return 54 Lebesgue singular function 170—173 Lifshitz tails 38 Liouville equation 49 70 Liouville equation, volume-preserving property 51 54 Liouville measure 51 123 Lorentz gas 154 161 181 211 215 241 247 Lorentz gas as a billiard system 240 Lorentz gas, dilute, random 246 249 Lorentz gas, ergodicity and mixing property 240 246 Lorentz gas, Grad limit 237 Lorentz gas, Lyapunov exponents 240 244 246 251 Lorentz gas, periodic orbit 212 Lorentz gas, separation of nearby trajectories 72 73 Lorentz lattice gases 218 Lorentz lattice gases, BBGKY hierarchy equations 221 Lorentz lattice gases, Boltzmann equation 221 Lorentz lattice gases, Chapman — Kolmogorov equation for 220 Lorentz lattice gases, dynamical partition function 222 223 Lorentz lattice gases, thermodynamic formalism 222 Lorentz lattice gases, topological pressure 223—226 Loschmidt’s paradox 2 36 56 Lyapunov exponent 9 100 101 Lyapunov exponent and information production 119 Lyapunov exponent and separation of nearby initial states 101 Lyapunov exponent for a periodic orbit 209 Lyapunov exponent, symplectic condition 104 114 159 186 241 Lyapunov exponent, using Boltzmann equation 240 Lyapunov exponent, using Probenius — Perron equation 130 Macroscopic and microscopic chaos 238 Manifolds/directions, stable and unstable 105 106 108—110 114 115 119 123 124 142 160 165 177 203 227 228 232 241 Markov partition 122 124 125 176 Markov partition and KS entropy 124 125 Markov partition and Markov process 125 126 Markov partition and Markov transition matrix 126 Markov partitionand Pesin’s theorem 126 Maxwell — Boltzmann distribution function 2 33 40 41 65 Measure/volume-preserving transformation 134 Mechanical problem of statistical mechanics 4 Metric indecomposability 68—70 Molecular chaos 240 Molecular chaos, assumption of 3 25 Multiplicative ergodic theorem of Oseledets 102 Navier — Stokes equations 233 238 Non-exponential separation of phase points 240 Nonequilibrium stationary states 14 157 201 Open systems/absorbing boundaries 129 136 153 186 188 Partition of a set 119 Periodic orbit expansion 16 152 178 203 Periodic orbit/point 69 124 126 205 Periodic orbit/point, prime 205 Periodic orbit/point, reducible 205 Pesin’s theorem 126 Poincare recurrence 65 Poincare recurrence, quantum systems 55 57 Poincare recurrence, recurrence theorem 2 6 35 54 55 124 241 Poincare recurrence, recurrence time 3 36 55 235 236 Quantum chaos 11 16 203 262—264 Random matrices 262 Random perturbations 61 236 262 Random perturbations and ergodicity 61 62 Repeller 16 138 139 142 146 154 163 164 251 Repeller, forward 142 Repeller, invariant 143 145 Repeller, KS entropy 139 Repeller, Lyapunov exponents 139 147 Repeller, time-reversed 143 Rotation map 64 Rotation map, ergodicity 64 65 Rotation map, KS entropy 122 Rotation map, partition of the unit circle 122 Ruelle zeta-function 214 Ruelle — Pollicott resonances 16 201 202 259 Ruelle’s inequality 126 Second law of thermodynamics 1 5 33 55 74 Second law of thermodynamics, Clausius form 30 Separated set 122 189 203 215 Shear flow 181 260 Sinai — Ruelle — Bowen (SRB) measure 15 71 126 160 163 164 170 175 Sinai — Ruelle — Bowen (SRB) measure, Hausdorff dimension 175 Sinai — Ruelle — Bowen (SRB) measure, Hausdorff dimension, Kaplan — Yorke formula 174 Sinai — Ruelle — Bowen (SRB) measure, Hausdorff dimension, Young’s formula 173 175 Sinai — Ruelle — Bowen (SRB) theorem 176 177 Sinai’s formula 242 Smale horseshoe 142—145 Smale horseshoe, escape rate 142 Sonine polynomials 43 Spatiotemporal chaos 18 Stosszahlansatz 25 29 31 33—35 37 47 232 235 237 Tagged particle diffusion 39 75 Tagged particle diffusion, Boltzmann equation 40 Tagged particle diffusion, Chapman — Enskog method 39 41 Tagged particle diffusion, cumulant expansion 85 Tagged particle diffusion, diffusion coefficient 40 45 46 Tagged particle diffusion, diffusion equation 40 46 Tagged particle diffusion, generating function for moments 85 Tagged particle diffusion, Green — Kubo formula 83 Tagged particle diffusion, probability current 41 42 Tagged particle diffusion, probability density 40 84 Tagged particle diffusion, Sonine polynomials 43 Tagged particle diffusion, ‘hydrodynamic’ stage 41 Tagged particle diffusion, ‘kinetic’ stage 41 Takagi function 200—202 Thermodynamic formalism for chaos 13 150 183 215 218 Thermodynamic/large-system limit 86 234—238 Thermostatted system 163 164 167 172 174 251 Thermostatted system, coarse-grained entropy 178 Thermostatted system, diffusion coefficient 154 Thermostatted system, entropy production 158 178 179 Thermostatted system, friction coefficient 155 158 Thermostatted system, Gaussian thermostat method 15 154 156 216 Thermostatted system, Liouville equation 156 157 Thermostatted system, macroscopic escape rate 153 Thermostatted system, microscopic escape rate 154 Time-reversal operator 167 Time-reversal operator for a map 167 Toral automorphism 111 112 114 203—205 207 228 Tpological entropy 185 190 207 Tpological pressure 149 150 183 185 187 190 191 Tpological zeta-function 205—207 Tpological zeta-function and Riemann zeta-function 206 Transitive system 123 Virial/cluster expansions 11 12 Viscous flow 154 261 Weak limit 71 Zermelo’s paradox 2 36 38 56 
                            
                     
                  
			Ðåêëàìà