Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Wolf E.L. — Nanophysics and nanotechnology. An introduction to modern concepts in nanoscience | |
Crowell B. — The modern revolution in physics | |
Siegman A.E. — Lasers | 337—338 |
Collin R.E. — Foundations for Microwave Engineerings | 47, 198—199 |
Wesseling P. — Principles of computational fluid dynamics | 35, 309, 327, 356 |
Swanson D.G., Hoefer W.J.R. — Microwave Circuit Modeling Using Electromagnetic Field Simulation | 96, 101, 102, 185, 237—244 |
Enns R.H., Mc Guire G.C. — Nonlinear physics with mathematica for scientists and engineers | 127 |
Weinstock R. — Calculus of variations with applications to physics & engineering | 266, 267, 269 |
Atkins P.W., Friedman R.S. — Molecular Quantum Mechanics | 519 |
Drazin P. — Introduction to Hydrodynamic Stability | 50, 51 |
Debnath L. — Nonlinear water waves | 26, 37—40, 42—43, 46, 55—56, 64—65, 101, 150, 214, 305, 471, 480, 485 |
Guenther R.D. — Modern optics | 4 (see also “Velocity”) |
Debnath L. — Nonlinear Partial Differential Equations for Scientists and Engineers | 97, 264, 404 |
Hand L.N., Finch J.D. — Analytical Mechanics | 526 |
Ewing W.M., Jardetzky W.S., Press F. — Elastic waves in layered media | 26, 68 |
Tompkins H.G., Irene E.A. — Handbook of Ellipsometry | 71, 107 |
Ablowitz M.J., Fokas A.S. — Complex Variables: Introduction and Applications | 475 |
Greiner W. — Quantum mechanics. An introduction | 30 |
Thaller B. — Visual quantum mechanics | 50, 98 |
Greiner W. — Classical mechanics. Point particles and relativity | 421 |
Walecka J.D. — Fundamentals of statistical mechanics | 132f |
Born M. — Natural philosophy of cause and chance (The Waynflete lectures) | 22, 90 |
Feynman R.P., Leighton R.B., Sands M. — The Feynman lectures on physics (vol.1) | 48—6 |
Altmann S.L. — Band Theory of Solids: An Introduction from the Point of View of Symmetry | 19 (1—8.8) |
Galindo A., Pascual P. — Quantum Mechanics Two | I 25, 115 |
Zauderer E. — Partial Differential Equations of Applied Mathematics | 144, 298 |
Schercliff J.A. — Vector Fields | 265 |
Cleland A.N. — Foundations of nanomechanics | 20, 101, 225 |
Greenberg M.D. — Advanced engineering mathematics | 342 |
van de Hulst H.C. — Light Scattering by Small Particles | 56 |
Born M. — Atomic Physics | 77, 281 |
Meschede D. — Optics, Light and Lasers: The Practical Approach to Modern Aspects of Photonics and Laser Physics | 32, 33, 85 |
Brillouin L. — Wave Propagation in Periodic Structures | 6, 69, 70, 75, 85, 108, 160 |
Heitler W. — Elementary Wave Mechanics With Applications to Quantum Chemistry | 4 |
Banerjee P.P., Poon T.-C. — Principles of applied optics | 78 |
Bube R.H. — Electronic Properties of Crystalline Solids: An Introduction to Fundamentals | 4 |
Young M. — Optics and Lasers: Including Fibers and Optical Waveguides | 5.1, 10.2.1 |
Billingham J., King A.C. — Wave Motion | 9, 15, 57, 78, 100, 109, 117, 148, 186, 281 |
Feynman R.P., Leighton R.B., Sands M. — The Feynman lectures on physics (vol.2) | I-48-6 |
Allen H.S. — Electrons and Waves | 240 |
Nayfeh M.H., Brussel M.K. — Electricity and Magnetism | 545, 644 |
Landau L.D., Lifschitz E.M. — Fluid Mechanics. Vol. 6 | 263 |
Lai W.M., Rubin D., Krempl E. — Introduction to continuum mechanics | 239 |
Mishchenko M.I. — Scattering, Absorption, and Emission of Light by Small Particles | 13, 14 |
Stone M. — The physics of quantum fields | 129 |
Galindo A., Pascual P. — Quantum Mechanics One | 25, 115 |
Kulish V.V. — Hierarchical Methods: Hierarchy and Hierarchical Asymptotic Methods In Electrodynamics, Volume 1 | 25, 26, 160, 161, 164, 194, 288 |
Kittel C. — Introduction to solid state physics | 63 |
Dresselhaus M.S., Dresselhaus G., Avouris Ph. — Carbon nanotubes | 229 |
Kenzel W., Reents G., Clajus M. — Physics by Computer | 152 |
Wolf E.L. — Nanophysics and nanotechnology: an introduction to modern concepts in nanoscience | 52 |
Park D. — Introduction to the quantum theory | 20 |
Selvadurai A.P.S. — Partial Differential Equations in Mechanics 1: Fundamentals, Laplace's Equation, Diffusion Equation, Wave Equation | 376, 449 |
Stratton J.A. — Electromagnetic Theory | 274, 276, 337—340 |
Kivelson Margaret G., Russell Christopher T. — Introduction to Space Physics (Cambridge Atmospheric & Space Science Series) | 51 |
Wong K. — Asymptotic Approximations of Integrals | 83 |
Strelkov S.P. — Mechanics | 475 |
Greiner W. — Classical electrodynamics | 363 |
Slater J.C. — Quantum Theory of Atomic Structure vol1 | 39—40 |
Pozrikidis C. — Fluid Dynamics: Theory, Computation, and Numerical Simulation | 516 |
Bates D.R. — Quantum Theory | 63 |
Mattheij R.M.M. — Partial differential equations: modeling, analysis, computation | 45, 370 |
Volovik G. — Artificial black holes | 121, 123 |
Fogiel M. — The optics problem solver | 1—4, 3—13, 3-14, 14—28, 23—10, 23-11 |
Kundt W. — Astrophysics. A Primer | 49 |
Auletta G. — Foundations and Interpretation of Quantum Mechanics | 699 |
Guru B.S., Hiziroğlu H.R. — Electromagnetic Field Theory Fundamentals | 357—8 |
Measures R.M. — Laser remote sensing. Fundamentals and applications | 14 |
Fox M. — Optical properties of solids | 38 |
Arya A.P. — Introduction to Classical Mechanics | 32, 629 |
Thompson Philip A. — Compressible-fluid dynamics | 523, 536543 |
van der Giessen E., Wu T. Y. — Advances in Applied Mechanics, Volume 34 | 341, 347, 360, 395, 396 |
Carmeli M. — Classical Fields: General Gravity and Gauge Theory | 402 |
Eringen A.C., Suhubi E.S. — Elastodynamics (vol.1) Finite motions | 211 |
Ohanian H.C. — Classical Electrodynamics | 379, 381 |
Pedrotti L.M. — Introduction to Optics | 194—97 |
Nouredine Z. — Quantum Mechanics: Concepts and Applications | 43—45 |
Schwartz M. — Principles of electrodynamics | 253—255 |
Rauch J. — Partial differential equations | 99, 102, 150 |
Stratton J.A. — Electromagnetic Theory | 274, 276, 337—340 |
Eringen A.C., Suhubi E.S. — Elastodynamics (vol. 2) Linear theory | 551 |
Papoulis A. — The Fourier Integral and Its Applications | 139 |
Harnwell G.P., Livingood J.J. — Experimental Atomic Physics | 17 |
Beard D.B. — Quantum Mechanics | 28 |
Büchner J., Dum C., Scholer M. — Space Plasma Simulation | 198 |
Wilson W. — Theoretical physics - Relativity and quantum dynamics | 193, 197, 250 |
Kemble E. C. — The fundamental principles of quantum mechanics | 14, 20 |
Achmanov S.A., Nikitin S.Yu. — Physical Optics | 380 |
Zhang K., Li D. — Electromagnetic Theory for Microwaves and Optoelectronics | 27, 215, 443 |
McQuarrie D.A. — Statistical Mechanics | 208 |
Ugarov V.A. — Special Theory of Relativity | 250, 291 |
Tzenov S.I. — Contemporary Accelerator Physics | 261 |
Wolfgang K. H. Panofsky, Phillips Panofsky, Melba Panofsky — Classical Electricity and Magnetism | 197, 202, 224, 412, 413 |
Wiedemann H. — Particle accelerator physics II | 165, 166 |
Hugh D. Young, Roger A. Freedman — University physics with modern physics | 494 |
Beard D.B. — Quantum Mechanics | 28 |
Matt Young — Optics and Lasers: Including Fibers and Optical Waveguides | 5.1, 10.2.1 |
Wong R. — Asymptotic approximations of integrals | 83 |
HarrisR. — Nonclassical physics: beyond Newton's view | 216—222 |
Tsang L., Kong J.A. — Scattering of electromagnetic waves (Vol 3. Advanced topics) | 259, 261 |
Kruegel E. — The Physics of Interstellar Dust | 11, 37, 40 |
Synge J.L. — Relativity: The Special Theory | 133, 135, 421 |
Bates D.R. — Quantum Theory. I. Elements | 63 |
Greiner W. — Classical mechanics. Systems of particles and hamiltonian dynamics | 110 |
Zeidler E. — Oxford User's Guide to Mathematics | 233 |
Arnold V.I. — Ordinary Differential Equations | 7 |
Spitzer L.Jr. — Physics of Fully Ionized Gases Interscience Tracts on Physics and Astronomy No. 3 | 49 |
Snygg J. — Clifford algebra: a computational tool for physicists | 184 |
Rao S.S. — Mechanical Vibrations | 632 |
Lee A. — Mathematics Applied to Continuum Mechanics | 396—397 |
Akhmanov S.A., Nikitin S.Yu. — Physical Optics | 380 |
Johnson W.C. — Mathematical and physical principles of engineering analysis | 293, 295, 314 |
Dolan T.J. — Fusion Research: Principles, Experiments and Technology | 126 |
Fung Y. — A First Course in Continuum Mechanics: for Physical and Biological Engineers and Scientists | 273 |
Mattheij R.M. — Partial differential equations | 45, 370 |
Groesen E., Molenaar J. — Continuum Modeling in the Physical Sciences (Monographs on Mathematical Modeling and Computation) | 98 |
Feynman R., Leighton R., Sands M. — Lectures on Physics 2 | I-48-6 |
Sexl R., Urbantke H.K. — Relativity, Groups, Particles. Special Relativity and Relativistic Symmetry in Field and Particle Physics | 25, 60 |
Snygg J. — Clifford algebra: a computational tool for physicists | 184 |
Wiedemann H. — Particle Accelerator Physics I: Basic Principles and Linear Beam Dynamics | 36, 268 |
Park D. — Introduction to the Quantum Theory (Pure & Applied Physics) | 20 |
Moeller K. — Optics: Learning by Computing, with Examples Using Maple, MathCad®, Matlab®, Mathematica®, and Maple® (Undergraduate Texts in Contemporary Physics) | 210 |
Landau L., Sykes J. — Fluid Mechanics: Vol 6 (Course of Theoretical Physics) | 263 |
Logan J. — Applied Mathematics: A Contemporary Approach | 232, 245 |
Kalckar J. — Foundations of Quantum Physics I (1926 - 1932), Volume 6 | 29, 31, 76, 84, 118, 149 |
Brandt S., Dahmen H.D. — Quantum mechanics on the personal computer | 5 |
Bell J., Kearsley M., Pitaevskii L. — Course of Theoretical Physics, Volume 8, Volume 8, Second Edition: Electrodynamics of Continuous Media | 236, 291 |
Landau L.D., Lifshitz E.M. — Course of Theoretical Physics, Volume 8: Electrodynamics of Continuous Media | 236, 291 |
Bell J.S., Kearsley M.J. — Course of Theoretical Physics, Volume 8: Electrodynamics of Continuous Media | 236, 291 |
L.D. Landau, E.M. Lifshitz — Electrodynamics of Continuous Media | 236, 291 |
L.D. Landau — Electrodynamics of Continuous Media | 236, 291 |
L. D. LANDAU, E. M. LIFSHITZ — ELECTRODYNAMICS OF CONTINUOUS MEDIA | 236, 291 |