Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Kharazishvili A.B. — Strange functions in real analysis | |
Bartle R.G. — The Elements of Integration | 20, 104 |
Hunter J.K., Nachtergaele B. — Applied Analysis | 338 |
Gray R.M. — Probability, Random Processes and Ergodic Properties | 43, 47 |
Rudin W. — Principles of Mathematical Analysis | 308 |
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 1) Functional analysis | 15, 13—18 |
Oda T. — Convex bodies and algebraic geometry: an introduction to the theory of toric varieties | 29, 33, 50, 100, 104, 157, 178, 186 |
Shorack G.R. — Probability for statisticians | 6, 23, 38, 67 |
Falconer K. — Fractal Geometry. Mathematical Foundations and applications | 12, 15, 26 |
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 270.G |
Falconer K. — Fractal Geometry: Mathematical Foundations and Applications | 13, 16, 112, 192, 264 |
Fisher Y. — Fractal Image Compression. Theory and Application | 44, 225 |
Evans L.C. — Partial Differential Equations | 645 |
Rockett A.M., Szusz P. — Continued Fractions | 137 |
Meyn S.P., Tweedie R.L. — Markov Chains and Stochastic Stability | 516 |
Allen R.L., Mills D.W. — Signal analysis. Time, frequency, scale and structure | 229—230 |
Apostol T.M. — Mathematical Analysis | 290, 408 |
Milnor J. — Dynamics in One Complex Variable | 8-2, 8-8, 15-2, 15-3, A-2 |
Molchanov I.I. — Limit theorems for unions of random closed sets | 11, 16 |
Rudin W. — Real and Complex Analysis | 50 |
Graves L.M. — Theory of Functions of Real Variables | 88, 195 |
Lee J.M. — Introduction to Smooth Manifolds | 434 |
Ward R.S., Wells R.O. — Twistor geometry and field theory | 97 |
Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 37, 70 |
von Collani E., Drager K. — Binomial Distribution Handbook for Scientists and Engineers | 29 |
Loeve M. — Probability Theory (part 2) | 128 |
Adams R.A. — Sobolev Spaces | 13, 14 |
Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications | 68 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis | 53, 66 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry | 638 |
Ferguson T.S. — Mathematical Statistics. A Decision Theoretic Approach | 50 |
Mahmoud H.M. — Evolution of random search trees | 216 |
Zimand M. — Computational Complexity: A Quantitative Perspective | 15—17, 86 |
Halmos P.R. — Measure Theory | 62, 153 |
Mill J.V. — The Infinite-Dimensional Topology of Function Spaces | 587 |
Kurtz D.S., Swartz C.W. — Theories of Integration | 68, 84 |
Pfeffer W.F., Fulton W. (Ed) — Riemann Approach to Integration: Local Geometric Theory | 81, 168 |
Resnick S.I. — A probability path | 57, 62, 88, 157, 160 |
Hensley D. — Continued Fractions | 79, 86, 100, 161, 166 |
Hrbacek K., Jech T. — Introduction to Set Theory | 152 |
Falconer K.J. — Techniques in Fractal Geometry | 9, 21, 150 |
Ott E. — Chaos in dynamical systems | 65 |
Berberian S.K. — Fundamentals of Real Analysis | 96 |
Pugh C.C. — Real Mathematical Analysis | 367 |
Nagashima H., Baba Y. — Introduction to chaos: physics and mathematics of chaotic phenomena | 122 |
Malliaris A.G., Brock W.A. — Stochastic methods in economics and finance | 3 |
Wapner L. — The Pea and the Sun: A Mathematical Paradox | 126, 168 |
Reed M., Simon B. — Methods of Functional Analysis (in 4 volumes). Volume 1: Functional Analysis | 15, 13—18 |
Atkinson K.E., Han W. — Theoretical Numerical Analysis: A Functional Analysis Framework | 15 |
Ziemer W.P. — Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation | 1.2(3) |
Royden H.L. — Real Analysis | 60 |
Chorin A.J. — Vorticity and turbulence | 27 |
Eschrig H. — The Fundamentals of Density Functional Theory | 111 |
Shreve S.E. — Stochastic Calculus for Finance 2 | 3, 20 |
Intriligator M.D., Arrow K.J. — Handbook of Mathematical Economics (vol. 4) | 1780, 1841, 1845, 1848, 2175—2176, 2199, 2215, 2216 |
Antman S.S. — Nonlinear Problems of Elasticity | 8 |
Royden H.L. — Real Analysis | 60 |
Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 295—300 |
Ito K. — Encyclopedic Dictionary of Mathematics | 270.G |
Milovanovic G.V., Mitrinovic D.S., Rassias T.M. — Topics in Polynomials: Extremal Problems, Inequalities, Zeros | 440 |
Taylor J.C. — An Introduction to Measure and Probability | 46 |
Mahmoud H.M. — Sorting: a distribution theory | 159 |
Borovkov A.A. — Ergodicity and Stability of Stochastic Processes | 70, 82, 160, 195, 228, 233, 283, 287 |
Schroeder M.R. — Schroeder, Self Similarity: Chaos, Fractals, Power Laws | 180, 291 |
Rudin W. — Real and complex analysis | 51 |
Kuczma M., Choczewski B., Ger R. — Iterative Functional Equations | 175—176, 182—183 |
Berger M., Pansu P., Berry J.-P. — Problems in Geometry | 2.G, 9.H |
Guggenheimer H.W. — Applicable Geometry | 124 |
Duffie D. — Security Markets. Stochastic Models | 54 |
Dieudonne J.A. — Treatise on Analysis, Vol. 2 | 13.1 |
Aubin T. — Nonlinear Analysis on Manifolds: Monge-Ampere Equations | 77 |
Weir A.J. — Lebesgue Integration and Measure | 124 et sqq. |
Bogachev V.I. — Measure Theory Vol.2 | I: 14, 21, 24, 25, 26 |
Strichartz R.S. — The way of analysis | 627, 630, 634, 636, 641, 643, 648, 652, 654, 718 |
Serra J. — Image Analysis and Mathematical Morphology | 114 |
Bingham N.H., Goldie C.M., Teugels J.L. — Regular variation | xix |
Aoki K. — Nonlinear dynamics and chaos in semiconductors | 203, 306 |
Baladi V. — Positive Transfer Operators And Decay Of Correlations | 72 |
Govil N.K. (ed.), Mohapatra R.N. (ed.), Nashed Z. (ed.) — Approximation theory: in memory of A. K. Varma | 184 |
Berger M., Cole M. (translator) — Geometry I (Universitext) | 0.6, 2.7.4.3, 8.2.5.2, 9.12.1, 11.8.8.1, 12.2.5 |
Hu S.-T. — Elements of real analysis | 71, 276 |
Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory | 47, 294—295 |
Billingsley P. — Probability and Measure | 24, 33, 40, 166, 171, 178, 17.17.241, 20.4 |
Grimmett G., Stirzaker D. — Probability and Random Processes | 281, 300, 315 |
Monk J.D., Bonnet R. — Handbook Of Boolean Algebras Vol.3 | 886, 935, 957, 976 |
Aczel J., Dhombres J. — Functional equations in several variables with applications to mathematics, information theory and to the natural and social sciences | 16, 18, 20, 21, 24, 37, 38, 49, 50, 56, 94, 6, 99, 102, 121, 124—6, 128, 169, 236, 8, 263, 284, 340, 371 |
Audin M. — Torus Actions on Symplectic Manifolds | 96, 209 |
Schulman L.S. — Techniques and applications of path integration | 56, 57 |
Wheeden R.L., Zygmund A. — Measure and integral. An introduction to real analysis | 37 |
Kaiser D. — A Friendly Guide to Wavelets | 35 |
Ash R.B., Doléans-Dade C.A. — Probability and Measure Theory | 26, 31 |
Mackey M.C. — Time's arrow: the origins of thermodynamic behavior | 4, 42 |
Holmes P., Lumley J.L., Berkooz G. — Turbulence, Coherent Structures, Dynamical Systems and Symmetry | 18, 198 |
Zeidler E. — Nonlinear Functional Analysis and Its Applications: Part 1: Fixed-Point Theorems | see Part II |
Saxe K. — Beginning functional analysis | 34, 42 |
Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142) | 167 |
Balakrishnan N. (ed.), Rao C.R. (ed.) — Order Statistics - Theory and Methods | 232, 234, 642 |
Ralph P. Boas Jr, Alexanderson G.L., Mugler D.H. — Lion Hunting and Other Mathematical Pursuits | 58 |
Kaiser G. — Friendly Guide to Wavelets | 35 |
Drmota M., Tichy R.F. — Sequences, Discrepancies and Applications | 1 |
Durrett R. — Probability: Theory and Examples | 2 |
van Dijk N. — Handbook of Statistics 16: Order Statistics: Theory & Methods | 232, 234, 642 |
Bridges D.S. — Foundations Of Real And Abstract Analysis | 113 |
Rosenblatt M. — Random processes | 74 |
Goffman C., Pedrick G. — First course in functional analysis | 115 |
Adler R.J. — Geometry of random fields | 18 |
Aliprantis C. — Principles of real analysis | 101, 113, 133, 134 |
Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 38, 39 |
Dembo A., Zeitouni O. — Large deviations techniques and applications | 165, 168, 252 |
Monk J.D., Bonnet R. — Handbook Of Boolean Algebras Vol.2 | 335 |
John Strikwerda — Finite difference schemes and partial differential equations | 414 |
Hille E. — Methods in classical and functional analysis | 112-119 |
Devaney R.L., Keen L. — Chaos and Fractals: The Mathematics Behind the Computer Graphics | 110 |
Hartman S., Mikusinski J. — The theory of Lebesgue measure and integration | 20 |
Rogers C.A. — Hausdorff Measures | 40—43 |
Almgren F.J. — Plateau's Problem: An Invitation to Varifold Geometry | 18 |
Kuttler K.L. — Modern Analysis | 171 |
Bridges D.S. — Computability: A mathematical sketchbook | 115 |
Kestelman H. — Modern theories of integration | 71 |
Wagon S. — The Banach-Tarski Paradox | 18, 24, 29—30, 117—118, 227 |
Howes N.R — Modern Analysis and Topology | 233, 262 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | 53, 66 |
Du D.-Z., Ko K.-I. — Theory of computational complexity | 132 |
Zeidler E. — Applied Functional Analysis: Applications to Mathematical Physics | 429 |
Monk J.D. (ed.) — Handbook of Boolean Algebras, Vol. 1 | 21, 234, 237 |
Lasota A., Mackey M.C. — Probabilistic Properties of Deterministic Systems | 27 |
Fuchs M., Seregin G. — Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids | 56, 98 |
Morel J.-M., Solimini S. — Variational Models for Image Segmentation: with seven image processing experiments (Progress in Nonlinear Differential Equations and Their Applications) | 7.3 |
Treves F. — Topological Vector Spaces, Distributions And Kernels | 99, 217 |
De Barra G — Measure theory and integration | 31, 94, 185 |
Stillwell J. — Mathematics and its history | 318, 319 |
Ivanov O.A. — Easy as Pi?: An Introduction to Higher Mathematics | 106, 144 |
Bäck T. — Evolutionary Algorithms in Theory and Practice | 47, 48 |
Cheney W. — Analysis for Applied Mathematics | 391 |
Falconer K. — Fractal geometry: mathematical foundations and applications | 13, 16, 112, 192, 264 |
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 38, 39 |
Epps T. — Quantitative Finance: Its Development, Mathematical Foundations, and Current Scope | 17, 26 |
Badii R., Politi A. — Complexity: Hierarchical structures and scaling in physics | 285 |
Dennery P., Krzywicki A. — Mathematics for Physicists | 187—189 |
Alexanderson G. — The harmony of the world: 75 years of Mathematics Magazine MPop | 129 |
Truss J.K. — Foundations of Mathematical Analysis | 262 |
Serra J. — Image Analysis and Mathematical Morphology | 114 |
Knuth D.E. — Selected papers on discrete mathematics | 262 |
Hrbacek K., Jech T. — Introduction to Set Theory, Third Edition, Revised, and Expanded (Pure and Applied Mathematics (Marcel Dekker)) | 152 |
Jorgensen P.E.T. — Analysis and Probability: Wavelets, Signals, Fractals | see "measure, Lebesgue" |
Truss J. — Foundations of mathematical analysis | 262 |
J. K. Truss — Foundations of mathematical analysis MCet | 262 |