| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà | 
| Kharazishvili A.B. — Strange functions in real analysis |  | 
| Bartle R.G. — The Elements of Integration | 20, 104 | 
| Hunter J.K., Nachtergaele B. — Applied Analysis | 338 | 
| Gray R.M. — Probability, Random Processes and Ergodic Properties | 43, 47 | 
| Rudin W. — Principles of Mathematical Analysis | 308 | 
| Reed M., Simon B. — Methods of Modern mathematical physics (vol. 1) Functional analysis | 15, 13—18 | 
| Oda T. — Convex bodies and algebraic geometry: an introduction to the theory of toric varieties | 29, 33, 50, 100, 104, 157, 178, 186 | 
| Shorack G.R. — Probability for statisticians | 6, 23, 38, 67 | 
| Falconer K. — Fractal Geometry. Mathematical Foundations and applications | 12, 15, 26 | 
| Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 270.G | 
| Falconer K. — Fractal Geometry: Mathematical Foundations and Applications | 13, 16, 112, 192, 264 | 
| Fisher Y. — Fractal Image Compression. Theory and Application | 44, 225 | 
| Evans L.C. — Partial Differential Equations | 645 | 
| Rockett A.M., Szusz P. — Continued Fractions | 137 | 
| Meyn S.P., Tweedie R.L. — Markov Chains and Stochastic Stability | 516 | 
| Allen R.L., Mills D.W. — Signal  analysis. Time, frequency, scale and structure | 229—230 | 
| Apostol T.M. — Mathematical Analysis | 290, 408 | 
| Milnor J. — Dynamics in One Complex Variable | 8-2, 8-8, 15-2, 15-3, A-2 | 
| Molchanov I.I. — Limit theorems for unions of random closed sets | 11, 16 | 
| Rudin W. — Real and Complex Analysis | 50 | 
| Graves L.M. — Theory of Functions of Real Variables | 88, 195 | 
| Lee J.M. — Introduction to Smooth Manifolds | 434 | 
| Ward R.S., Wells R.O. — Twistor geometry and field theory | 97 | 
| Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 37, 70 | 
| von Collani E., Drager K. — Binomial Distribution Handbook for Scientists and Engineers | 29 | 
| Loeve M. — Probability Theory (part 2) | 128 | 
| Adams R.A. — Sobolev Spaces | 13, 14 | 
| Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications | 68 | 
| Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis | 53, 66 | 
| Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry | 638 | 
| Ferguson T.S. — Mathematical Statistics. A Decision Theoretic Approach | 50 | 
| Mahmoud H.M. — Evolution of random search trees | 216 | 
| Zimand M. — Computational Complexity: A Quantitative Perspective | 15—17, 86 | 
| Halmos P.R. — Measure Theory | 62, 153 | 
| Mill J.V. — The Infinite-Dimensional Topology of Function Spaces | 587 | 
| Kurtz D.S., Swartz C.W. — Theories of Integration | 68, 84 | 
| Pfeffer W.F., Fulton W. (Ed) — Riemann Approach to Integration: Local Geometric Theory | 81, 168 | 
| Resnick S.I. — A probability path | 57, 62, 88, 157, 160 | 
| Hensley D. — Continued Fractions | 79, 86, 100, 161, 166 | 
| Hrbacek K., Jech T. — Introduction to Set Theory | 152 | 
| Falconer K.J. — Techniques in Fractal Geometry | 9, 21, 150 | 
| Ott E. — Chaos in dynamical systems | 65 | 
| Berberian S.K. — Fundamentals of Real Analysis | 96 | 
| Pugh C.C. — Real Mathematical Analysis | 367 | 
| Nagashima H., Baba Y. — Introduction to chaos: physics and mathematics of chaotic phenomena | 122 | 
| Malliaris A.G., Brock W.A. — Stochastic methods in economics and finance | 3 | 
| Wapner L. — The Pea and the Sun: A Mathematical Paradox | 126, 168 | 
| Reed M., Simon B. — Methods of Functional Analysis (in 4 volumes). Volume 1: Functional Analysis | 15, 13—18 | 
| Atkinson  K.E., Han W. — Theoretical Numerical Analysis: A Functional Analysis Framework | 15 | 
| Ziemer W.P. — Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation | 1.2(3) | 
| Royden H.L. — Real Analysis | 60 | 
| Chorin A.J. — Vorticity and turbulence | 27 | 
| Eschrig H. — The Fundamentals of Density Functional Theory | 111 | 
| Shreve S.E. — Stochastic Calculus for Finance 2 | 3, 20 | 
| Intriligator M.D., Arrow K.J. — Handbook of Mathematical Economics (vol. 4) | 1780, 1841, 1845, 1848, 2175—2176, 2199, 2215, 2216 | 
| Antman S.S. — Nonlinear Problems of Elasticity | 8 | 
| Royden H.L. — Real Analysis | 60 | 
| Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 295—300 | 
| Ito K. — Encyclopedic Dictionary of Mathematics | 270.G | 
| Milovanovic G.V., Mitrinovic D.S., Rassias T.M. — Topics in Polynomials: Extremal Problems, Inequalities, Zeros | 440 | 
| Taylor J.C. — An Introduction to Measure and Probability | 46 | 
| Mahmoud H.M. — Sorting: a distribution theory | 159 | 
| Borovkov A.A. — Ergodicity and Stability of Stochastic Processes | 70, 82, 160, 195, 228, 233, 283, 287 | 
| Schroeder M.R. — Schroeder, Self Similarity: Chaos, Fractals, Power Laws | 180, 291 | 
| Rudin W. — Real and complex analysis | 51 | 
| Kuczma M., Choczewski B., Ger R. — Iterative Functional Equations | 175—176, 182—183 | 
| Berger M., Pansu P., Berry J.-P. — Problems in Geometry | 2.G, 9.H | 
| Guggenheimer H.W. — Applicable Geometry | 124 | 
| Duffie D. — Security Markets. Stochastic Models | 54 | 
| Dieudonne J.A. — Treatise on Analysis, Vol. 2 | 13.1 | 
| Aubin T. — Nonlinear Analysis on Manifolds: Monge-Ampere Equations | 77 | 
| Weir A.J. — Lebesgue Integration and Measure | 124 et sqq. | 
| Bogachev V.I. — Measure Theory Vol.2 | I: 14, 21, 24, 25, 26 | 
| Strichartz R.S. — The way of analysis | 627, 630, 634, 636, 641, 643, 648, 652, 654, 718 | 
| Serra J. — Image Analysis and Mathematical Morphology | 114 | 
| Bingham N.H., Goldie C.M., Teugels J.L. — Regular variation | xix | 
| Aoki K. — Nonlinear dynamics and chaos in semiconductors | 203, 306 | 
| Baladi V. — Positive Transfer Operators And Decay Of Correlations | 72 | 
| Govil N.K. (ed.), Mohapatra R.N. (ed.), Nashed Z. (ed.) — Approximation theory: in memory of A. K. Varma | 184 | 
| Berger M., Cole M. (translator) — Geometry I (Universitext) | 0.6, 2.7.4.3, 8.2.5.2, 9.12.1, 11.8.8.1, 12.2.5 | 
| Hu S.-T. — Elements of real analysis | 71, 276 | 
| Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory | 47, 294—295 | 
| Billingsley P. — Probability and Measure | 24, 33, 40, 166, 171, 178, 17.17.241, 20.4 | 
| Grimmett G., Stirzaker D. — Probability and Random Processes | 281, 300, 315 | 
| Monk J.D., Bonnet R. — Handbook Of Boolean Algebras Vol.3 | 886, 935, 957, 976 | 
| Aczel J., Dhombres J. — Functional equations in several variables with applications to mathematics, information theory and to the natural and social sciences | 16, 18, 20, 21, 24, 37, 38, 49, 50, 56, 94, 6, 99, 102, 121, 124—6, 128, 169, 236, 8, 263, 284, 340, 371 | 
| Audin M. — Torus Actions on Symplectic Manifolds | 96, 209 | 
| Schulman L.S. — Techniques and applications of path integration | 56, 57 | 
| Wheeden R.L., Zygmund A. — Measure and integral. An introduction to real analysis | 37 | 
| Kaiser D. — A Friendly Guide to Wavelets | 35 | 
| Ash R.B., Doléans-Dade C.A. — Probability and Measure Theory | 26, 31 | 
| Mackey M.C. — Time's arrow: the origins of thermodynamic behavior | 4, 42 | 
| Holmes P., Lumley J.L., Berkooz G. — Turbulence, Coherent Structures, Dynamical Systems and Symmetry | 18, 198 | 
| Zeidler E. — Nonlinear Functional Analysis and Its Applications: Part 1: Fixed-Point Theorems | see Part II | 
| Saxe K. — Beginning functional analysis | 34, 42 | 
| Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142) | 167 | 
| Balakrishnan N. (ed.), Rao C.R. (ed.) — Order Statistics - Theory and Methods | 232, 234, 642 | 
| Ralph P. Boas Jr, Alexanderson G.L., Mugler D.H. — Lion Hunting and Other Mathematical Pursuits | 58 | 
| Kaiser G. — Friendly Guide to Wavelets | 35 | 
| Drmota M., Tichy R.F. — Sequences, Discrepancies and Applications | 1 | 
| Durrett R. — Probability: Theory and Examples | 2 | 
| van Dijk N. — Handbook of Statistics 16: Order Statistics: Theory & Methods | 232, 234, 642 | 
| Bridges D.S. — Foundations Of Real And Abstract Analysis | 113 | 
| Rosenblatt M. — Random processes | 74 | 
| Goffman C., Pedrick G. — First course in functional analysis | 115 | 
| Adler R.J. — Geometry of random fields | 18 | 
| Aliprantis C. — Principles of real analysis | 101, 113, 133, 134 | 
| Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 38, 39 | 
| Dembo A., Zeitouni O. — Large deviations techniques and applications | 165, 168, 252 | 
| Monk J.D., Bonnet R. — Handbook Of Boolean Algebras Vol.2 | 335 | 
| John Strikwerda — Finite difference schemes and partial differential equations | 414 | 
| Hille E. — Methods in classical and functional analysis | 112-119 | 
| Devaney R.L., Keen L. — Chaos and Fractals: The Mathematics Behind the Computer Graphics | 110 | 
| Hartman S., Mikusinski J. — The theory of Lebesgue measure and integration | 20 | 
| Rogers C.A. — Hausdorff Measures | 40—43 | 
| Almgren F.J. — Plateau's Problem: An Invitation to Varifold Geometry | 18 | 
| Kuttler K.L. — Modern Analysis | 171 | 
| Bridges D.S. — Computability: A mathematical sketchbook | 115 | 
| Kestelman H. — Modern theories of integration | 71 | 
| Wagon S. — The Banach-Tarski Paradox | 18, 24, 29—30, 117—118, 227 | 
| Howes N.R — Modern Analysis and Topology | 233, 262 | 
| Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | 53, 66 | 
| Du D.-Z., Ko K.-I. — Theory of computational complexity | 132 | 
| Zeidler E. — Applied Functional Analysis: Applications to Mathematical Physics | 429 | 
| Monk J.D. (ed.) — Handbook of Boolean Algebras, Vol. 1 | 21, 234, 237 | 
| Lasota A., Mackey M.C. — Probabilistic Properties of Deterministic Systems | 27 | 
| Fuchs M., Seregin G. — Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids | 56, 98 | 
| Morel J.-M., Solimini S. — Variational Models for Image Segmentation: with seven image processing experiments (Progress in Nonlinear Differential Equations and Their Applications) | 7.3 | 
| Treves F. — Topological Vector Spaces, Distributions And Kernels | 99, 217 | 
| De Barra G — Measure theory and integration | 31, 94, 185 | 
| Stillwell J. — Mathematics and its history | 318, 319 | 
| Ivanov O.A. — Easy as Pi?: An Introduction to Higher Mathematics | 106, 144 | 
| Bäck T. — Evolutionary Algorithms in Theory and Practice | 47, 48 | 
| Cheney W. — Analysis for Applied Mathematics | 391 | 
| Falconer K. — Fractal geometry: mathematical foundations and applications | 13, 16, 112, 192, 264 | 
| Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 38, 39 | 
| Epps T. — Quantitative Finance: Its Development, Mathematical Foundations, and Current Scope | 17, 26 | 
| Badii R., Politi A. — Complexity: Hierarchical structures and scaling in physics | 285 | 
| Dennery P., Krzywicki A. — Mathematics for Physicists | 187—189 | 
| Alexanderson G. — The harmony of the world: 75 years of Mathematics Magazine MPop | 129 | 
| Truss J.K. — Foundations of Mathematical Analysis | 262 | 
| Serra J. — Image Analysis and Mathematical Morphology | 114 | 
| Knuth D.E. — Selected papers on discrete mathematics | 262 | 
| Hrbacek K., Jech T. — Introduction to Set Theory, Third Edition, Revised, and Expanded (Pure and Applied Mathematics (Marcel Dekker)) | 152 | 
| Jorgensen P.E.T. — Analysis and Probability: Wavelets, Signals, Fractals | see "measure, Lebesgue" | 
| Truss J. — Foundations of mathematical analysis | 262 | 
| J. K. Truss — Foundations of mathematical analysis MCet | 262 |