Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Almgren F.J. — Plateau's Problem: An Invitation to Varifold Geometry
Almgren F.J. — Plateau's Problem: An Invitation to Varifold Geometry



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Plateau's Problem: An Invitation to Varifold Geometry

Автор: Almgren F.J.

Аннотация:

Mathematics has been expanding in all directions at a fabulous rate during the past half century. New fields have emerged, the diffusion into other disciplines has proceeded apace, and our knowledge of the classical areas has grown ever more profound. Al the same time, one of the most striking trends in modern mathematics is the constantly increasing interrelationship between its various branches. Thus the present-day students of mathematics are faced with an immense mountain of material. In addition to the traditional areas of mathematics as presented in the traditional manner—and these presentations do abound—there are the new and often enlightening ways of looking &t these traditional areas, and also the vast new areas teeming with potentialities. Much of this new material is scattered indigestibly throughout the research journals, and frequently coherently organized only in the minds or unpublished notes of the working mathematicians. And students desperately need to learn more and more of this material.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1966

Количество страниц: 81

Добавлена в каталог: 20.03.2010

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
$C^k$      21
$GV_k$      51
$H^k$      15
$IV_k$      43
$V_K$      43
Analytic sets      18
Area      16 18
Calculus of variations      54
Covectors      18—21
Critical point      54
Current      37
Current, integral      5 39
Current, rectifiable      37
Diameter of regular varifold      70
Disk      2
Disk with handles      3
Disk with spines      42—43
Distance      see "Metric"
Douglas, J.      2 3 71
Dual vector space      18-21
f      45
Federer, H.      5 67 71
Flat chains with coefficients in a group      5
Fleming, W.H.      4 5 69 71
Force diagram method      62
Intersection of varifolds      see "Varifold operations"
Isoperimetric inequalities      65
Lebesgue measure      18
Length      16 18
Lipschitz condition      14—15 21
M      46
Mass      50
Metric      22 see
Metric, distance      22
Minimal surface      64
Moebius band      5—7
Moebius band, triple      5—7
Monotonicity for regular vari      69—70
Multiplicities      3 39—41 47
P      59
Partial ordering of varifolds      see "Varifold operations"
Plateau, J.      1 71
Plateau’s construction problem      2
Plateau’s existence problem      2
Plateau’s problem      1
Projective space      22
Rectifiable set      30—33
Rectifiable set, oriented      32—33
Reifenberg, E.R.      4 69 71 72
S      55
Singular set      13
Soap bubbles      1—2 57 60 65
Soap films      1—2 7-—13 56—57 60 65
Soap films, not touching all of boundary wire      7—9 65 68
Stationary point      54
Stationary varifold      see "Varifold"
Stokes’ Theorem      39
Sum of varifolds      see "Varifold operations"
Support, of differential form      21
Support, of varifold      43
Surface tension      9
Suslin sets      18
t      58
Union of varifolds      see "Varifold operations"
V      50
Variation      55
Varifold metrics      45 46
Varifold operations, intersection      44
Varifold operations, partial ordering      44
Varifold operations, sum      44
Varifold operations, union      44
Varifold pairs      59
Varifold pairs, regular      59
Varifold pairs, stationary      59
Varifold pairs, stationary, touching all of boundary      67
Varifold, axioms for      38 43
Varifold, definition      43
Varifold, elementary      50-51
Varifold, geometric      51
Varifold, integral      1 38 47
Varifold, rectifiable      38
Varifold, stationary      55 57
w      47
X      53
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте