Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
von Collani E., Drager K. — Binomial Distribution Handbook for Scientists and Engineers
von Collani E., Drager K. — Binomial Distribution Handbook for Scientists and Engineers



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Binomial Distribution Handbook for Scientists and Engineers

Авторы: von Collani E., Drager K.

Аннотация:

Binomial Distribution Handbook for Scientists and Engineers is a new reference book that deals with estimating and testing a proportion or the probability of an event. The purpose of the book is twofold: it aims at providing practitioners with refined and easy-to-use techniques as well as initiating a new field of research in theoretical statistics. The book contains completely new interval and point estimators as well as test procedures that are superior to the traditional ones. Statistics and practitioners applying statistical methods will find this book an essential professional reference providing easy access to practical material for quick use.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2001

Количество страниц: 357

Добавлена в каталог: 19.05.2006

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
$\alpha$-exclusion space      126
$\beta$-estimator      105 106
$\beta$-measurement & prediction space for $X_S$      72 78
$\beta$-measurement h prediction space      70
$\beta$-measurement interval      71 73
$\beta$-measurement procedure      72 73
$\beta$-measurement procedure, complete      105
$\beta$-measurement procedure, Neyman      79
$\beta$-measurement procedure, Neyman $X_{S^-}$      80
$\beta$-prediction procedure      73
$\beta$-prediction region      73
Acceptance region      9
alternative      146
Alternative hypothesis      145
Ars Conjectandi      3
Bayes approach      34 177
Bernoulli experimen      13
Bernoulli experiment      42 194
Bernoulli, Jakob      3
Binomial model      193
Binomial test      213
Chapman test      225
Clopper — Pearson confidence intervals      95
Comparison procedure      145
Comparison procedure, $\alpha_1, \cdots , \alpha_m$-      150 151
Comparison procedure, Neyman $\alpha_1, \alpha_{2^-}$      155
Comparison space, $\alpha_1, \cdots , \alpha_m$-      150
Conditional density of p      65
Conditional distribution of $\breve{\theta}$      64
Conditional mean squared error      106
Conditional measure of      6 65
Conditional test      223
Confidence interval      8 32 41
Confidence level      9 41 62
Consistency      40 100
Continuity correction      27
Convex hull      159
DATA      17
Difference of two probabilities      200
Distribution function      6 16
Distribution parameter      xvi
Distribution, $\chi^2-$      24
Distribution, Bernoulli      19
Distribution, binomial      19 21
Distribution, F-      22 52
Distribution, hypergeometric      21 27 28
Distribution, joint      20
Distribution, Poisson      24
Distribution, standardized normal      25
Error of Type I      150
Error of Type m      150
Error of Type*II      150
Error probability      147
Essai philosophique sur les probabilites      4
Estimation theory      120
Estimator, interval      36 39
Estimator, point      36 39
Exclusion error      124
Exclusion procedure      120
Exclusion procedure Neyman $\alpha-$      129
Exclusion procedure, $\alpha-$      124
Failure probability      127 151
False decision      124
Fisher, R.A.      8
General space      37 61
Hypergeometric model      193
Inverse problem      22
Joint distribution of $(\breve{p}, \vec{X})$      64
Joint measure of $(\breve{p}, \vec{X})$      66
Kolmogorov, A.N.      5
Laplace, Pierre Simon de      25
Laplace, Simon      4
Lebesgue measure      29
Likelihood ratio      130
Likelihood ration order      131
Local $(1 - \alpha)$-prediction region      126
Local $(1 - \alpha)$-prediction space      126
Marginal density of p      63
Marginal probability measure $Q_{\{0,1\}^n}$      65
Maximum likelihood ration      154
Maximum parameter space      121
Measurable space      61
Measurement &; prediction space $([p, \vec{p}] \times \{0, 1, \cdots, n\})$      67
Measurement error      97
Measurement h prediction space      61 63
Measurement interval      40 98
Measurement precision      4 61 97 98
Measurement procedure      4 41 69
Measurement procedure, approximate      52
Measurement procedure, complete      98
Measurement procedure, traditional      49
Measurement range      11 29
Measurement region      97
Measurement reliability      4 40 46 97
Measurement space      60 61
Measurement space conform      102
Measurement space conformity      102
Median      219
Midpoint $\beta$-estimator      112
Minimum MSE-$\beta$-estimator      107
Minimum variance      40
Moivre, Abraham de      25
Neyman $\alpha_1, \cdots , \alpha_m$-comparison procedure      152
Neyman, Jerzy      5
Nonconformance probability      102
Null hypothesis      120
Null hypothesis, simple      121
Point estimate      98
Point estimator      98
Poisson distribution      203
Poisson, Simeon-Denis      24
Population      14 18
PRECISION      30
Prediction procedure      62 69 71
Prediction region      71
Prior distribution      177
probability      12
Probability space      17
Probability volume      77 106
Proportion      14
Quality characteristic      75
Quality indicator      105 129
Quantile      22
Random experiment      14
Random phenomenon      13
Random sample      xvi 7 19 35
Random sample, classification      16
Random sample, independent      16
Random variable      xvi
Real-valued model      18
Real-world model      18
Relative frequency      46 47 99
Reliability      10
Reliability excess      78 127 186
Reliability requirement      126
Robust estimator      101
Set, connected      70 72
Sign test      218
Significance level      122
Significance test      120
Statistical thinking      119
Success probability      127 147
Test theory      120
Test, binomial      213
Test, Chapman      225
Test, McNemar      222
Test, sign      218
Theorem, central limit      25
Theorem, Moivre — Laplace integral limit      25
Theorem, Moivre — Laplace limit      25
Theory of estimation      32
Unbiasedness      40 100
Weight function $w(\vec{x})$      65
Weighted volume      76
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте