| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà | 
| Weintraub S. — Differential Forms. A complement to vector calculus |  | 
| Guillemin V., Pollack A. — Differential topology | 178 | 
| Ãîâîðóõèí Â., Öèáóëèí Á. — Êîìïüþòåð â ìàòåìàòè÷åñêîì èññëåäîâàíèè | 141 | 
| Ìàíçîí Á.Ì. — Maple V power edition | 213 | 
| Heinbockel J.H. — Introduction to tensor calculus and continuum mechanics | 21, 173 | 
| Spiegel M.R. — Mathematical Handbook of Formulas and Tables | 120 | 
| Rudin W. — Principles of Mathematical Analysis | 181 | 
| Morse P., Feshbach H. — Methods of Theoretical Physics (part 1) | 39, 50 | 
| Morse P., Feshbach H. — Methods of Theoretical Physics (part 2) | 39, 50 | 
| Borisenko A.I., Tarapov I.E. — Vector and Tensor Analysis with Applications | 161—164 | 
| Ray J., Ray W. — Mac OS X Tiger Unleashed | 2nd 3rd 4th 5th 6th 7th | 
| Tennekes H., Lumley J.L. — A First Course in Turbulence | 76, 82 | 
| Wesseling P. — Principles of computational fluid dynamics | 6, 8, 500 | 
| Felsager B. — Geometry, particles and fields | 5, 366 | 
| Bauer M.D. — Linux Server Security |  | 
| Abell M.L., Braselton J.P. — Mathematica by Example | 347, 349, 350 | 
| Lee J.M. — Introduction to Smooth Manifolds | 263 | 
| Widder D.V. — Advanced calculus | 65 | 
| Atkins P.W., Friedman R.S. — Molecular Quantum Mechanics | 440, 548 | 
| Williamson R.E., Crowell R.H., Trotter H.F. — Calculus of vector functions | 351, 372 | 
| Polya G., Latta G. — Complex Variables | 91 | 
| Bauer M.D. — Building Secure Servers With Linux |  | 
| Edwards H. — Advanced Calculus: A Differential Forms Approach | 267 | 
| Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis | 135 | 
| Franklin P. — Fourier Methods | 137, 139 | 
| Braselton J.P. — Maple by Example | 393, 395, 403 | 
| Monk P. — Finite Element Methods for Maxwell's Equations | 50 | 
| Sagan H. — Advanced Calculus of Real-Valued Functions of a Real Variable and Vector-Valued Functions of a Vector Variable | 533 | 
| Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 331 | 
| Edminister J.A. — Schaum's outline of electromagnetics | 47 | 
| Zung N.T. — Poisson Structures and their Normal Forms | 70 | 
| Rutherford D.E. — Vector Methods | 63, 124 | 
| Cooper J. — A Matlab Companion for Multivariable Calculus | 227, 231, 239 | 
| Ablowitz M.J., Fokas A.S. — Complex Variables: Introduction and Applications | 40 | 
| Weatherburn C. — Advanced Vector Analysis | 7, 12 | 
| Eringen A.C. — Mechanics of continua | 523, 552 | 
| Shankar R. — Basic Training In Mathematics | 172, 174, 177 | 
| Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1 | 781, 785, 789 | 
| Greiner W. — Classical mechanics. Point particles and relativity | 87 | 
| Fripp A., Fripp J., Fripp M. — Just-in-Time Math for Engineers | 284, 290—292 | 
| Schey H.M. — DIV, Grad, Curl, and All That: An Informal Text on Vector Calculus | 75—90 | 
| Ayres F.J., Mendelson E. — Schaum's Outline of Calculus | 427 | 
| Kadanoff L.P. — Statistical physics | 361, 362 | 
| Antman S.S. — Nonlinear Problems of Elasticity | 381 | 
| Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 3 | 781, 785, 789 | 
| Menzel D.H. — Mathematical Physics | 125, 141 | 
| Perry J. — The Calculus for Engineers | 134 | 
| Sokolnikoff I.S. — Higher Mathematics  for  Engineers and Physicists | 418, 422, 423, 438 | 
| Singer I.M., Thorpe J.A. — Lecture Notes on Elementary Topology and Geometry | 112 | 
| Konopinski E.J. — Electromagnetic fields and relativistic particles | 476 | 
| Lebedev L.P., Cloud M.J. — Tensor Analysis | 65 | 
| Sokolnikoff I.S. — Mathematics of Physics and Modern Engineering | 396 | 
| Robinson W.S. — Magnetic Phenomena - An Elementary Treatise | 48 | 
| Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 2 | 781, 785, 789 | 
| Strichartz R.S. — The way of analysis | 508 | 
| Shapira Y. — Solving PDEs in C++: numerical methods in a unified object-oriented approach | 415 | 
| O'Neill B. — Semi-Riemannian Geometry: With Applications to Relativity | 95 | 
| Dubrovin B.A., Fomenko A.T., Novikov S.P. — Modern Geometry - Methods and Applications. Part 1. The Geometry of Surfaces, Transformation Groups and Fields | 240 | 
| Spivak M. — A Comprehensive Introduction to Differential Geometry (Vol.1) | 238 | 
| Munkres J.R. — Analysis on manifolds | 264 | 
| Nayfeh M.H., Brussel M.K. — Electricity and Magnetism | 16 | 
| Mercier A. — Analytical and canonical formalism in physics | 70, 89, 90, 93 | 
| Kleppner D., Kolenkow R. — An introduction to mechanics | 218 | 
| Char B.W. — First Leaves: A Tutorial Introduction to Maple V | 99 | 
| Auerbach F. — Modern magnetics | 42, 249 | 
| Kenzel W., Reents G., Clajus M. — Physics by Computer | 37 | 
| Desloge E.A. — Classical Mechanics. Volume 1 | 408 — 409, 414, 416, 425 | 
| Paoluzzi A. — Geometric Programming for Computer Aided Design by Alberto Paoluzzi: Book Cover      *           o              Table of Contents             Read a Sample Chapter  Geometric Programming for Computer Aided Design | 192, 193 | 
| Spiegel M.R. — Schaum's mathematical handbook of formulas and tables | 120 | 
| Chan Man Fong C.F., De Kee D., Kaloni P.N. — Advanced Mathematics for Engineering and Sciences | 303, 375 | 
| Kuttler K. — Calculus, Applications and Theory | 593 | 
| Kompaneyets A.S., Yankovsky G. — Theoretical Physics | 96 | 
| Olver P.J., Shakiban C. — Applied linear. algebra | 338 | 
| Kreyszig E. — Advanced engineering mathematics | 414, 430, 472, A71 | 
| Fogiel M. — The optics problem solver | 5—22 | 
| Neff H.P.Jr. — Introductory electromagnetics | 16, 20—24 | 
| Lawden D.F. — An Introduction to Tensor Calculus, Relativity and Cosmology | 31, 118 | 
| Stewart I.W. — The Static and Dynamic  Continuum Theory of  Liquid Crystals: A Mathematical Introduction | 11 | 
| Rosenfeld B. — Geometry of Lie Groups | 14 | 
| Weyl H. — Space, Time, Matter | 60 | 
| Bird R.B., Armstrong R.C., Hassager O. — Dynamics of polymeric liquids (Vol. 1. Fluid mechanics) | (1)572 | 
| Kitahara M. — Boundary Integral Equation Methods in Eigenvalue Problems of Elastodynamics  and Thin Plates | 12 | 
| Weinberg S. — Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity | 43, 106, 109, 116 | 
| Bayin S.S. — Mathematical Methods in Science and Engineering | 193 | 
| Arya A.P. — Introduction to Classical Mechanics | 164 | 
| Petrila T., Trif D. — Basics of Fluid Mechanics and Introduction to Computational Fluid Dynamics | 9 | 
| Carmeli M. — Classical Fields: General Gravity and Gauge Theory | 141, 373 | 
| Eringen A.C., Suhubi E.S. — Elastodynamics (vol.1) Finite motions | 307 | 
| Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity | 65 | 
| Efimov A.V. — Mathematical analysis: advanced topics. Part 2. Application of some methods of mathematical and functional analysis | 53 | 
| Browder A. — Mathematical Analysis: An Introduction | 289 | 
| Rutherford D.E. — Vector methods. Applied to differential geometry, mechanics, and potential theory | 63, 124 | 
| Ohanian H.C. — Classical Electrodynamics | 16, 25, 36 | 
| Sutton O.G. — Mathematics in action | 54 | 
| Hermann R. — Differential geometry and the calculus of variations | 3, 99 | 
| Harman T.L., Dabney J.B., Richert N.J. — Advanced Engineering Mathematicas with MATLAB | 619 | 
| Maxwell J.C. — Treatise on electricity and magnetism. Volume Two | 25 | 
| Atkins P. — Molecular Quantum Mechanics | 415, 518 | 
| Marathe K.B., Martucci G. — The mathematical foundations of gauge theories | 22 | 
| Davis H. F., Snider A. D. — Introduction to Vector Analysis | 97—99 | 
| Eddington A.S. — The mathematical theory of relativity | 67 | 
| Morse P.M. — Methods of theoretical physics | 39, 50 | 
| Gould H., Tobochnik J., Christian W. — An introduction to computer simulation methods | 386, 398—402 | 
| Weinreich G. — Geometrical vectors | 3, 57—60 | 
| Atkins P.W., Friedman R.S. — Molecular Quantum Mechanics | 415, 518 | 
| Hobbie R., Roth B. — Intermediate Physics for Medicine and Biology, | 213 | 
| Frankel T. — The geometry of physics: an introduction | 93 | 
| Barry Steven, Davis Stephen — Essential Mathematical Skills: For Students of Engineering, Science and Applied Mathematics | 108 | 
| Hildebrand F.B. — Advanced Calculus for Applications | 277, 294 | 
| Griffits D.J. — Introductions to electrodynamics | 16, 19, 552—553 | 
| Strang G. — Introduction to Applied Mathematics | 186, 196, 202, 205, 215, 217 | 
| Eddington A.S. — Mathematical Theory of Relativity | 67 | 
| Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | 135 | 
| Blum E.K., Lototsky S.V. — Mathematics of Physics and Engineering | 138 | 
| Jeffreys H. — Methods Of Mathematical Physics | 90 | 
| Wrede R.C., Spiegel M. — Theory and problems of advanced calculus | 158, 159, 172—174 | 
| Synge J.L. — Relativity: The Special Theory | 317 | 
| Barut A.O. — Electrodynamics and Classical Theory of Fields and Particles | 38 | 
| Zeidler E. — Oxford User's Guide to Mathematics | 360, 364 | 
| Edward M. Purcell — Electricity and magnetism | 68—76 | 
| Lee A. — Mathematics Applied to Continuum Mechanics | 62 | 
| Attwood S.S. — Electric and Magnetic Fields | 439 | 
| Spivak M. — Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus | 88, 137 | 
| Hopf L., Nef W. — Introduction To The Differential Equations Of Physics | 52 | 
| Fung Y. — A First Course in Continuum Mechanics: for Physical and Biological Engineers and Scientists | 61 | 
| Woods F.S. — Advanced Calculus | 212 | 
| Frankel T. — The geometry of physics: An introduction | 93 | 
| Schutz B. — Geometrical Methods in Mathematical Physics | 136, 176 | 
| Zorich V.A., Cooke R. — Mathematical analysis II | 203, 260, 274 | 
| Zorich V. — Mathematical Analysis | 203, 260, 274 | 
| Weber E. — Electromagnetic Fields - Theory and Applications (Volume 1 - Mapping of Fields) | 541 | 
| Synge J. L. — Tensor Calculus | 135, 246 | 
| Bird R.B., Curtiss C.F., Armstrong R.C. — Dynamics of Polymeric Liquids. Vol. 2. Kinetic Theory | (1)572 | 
| Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 202 | 
| Foster J., Nightingale J. — A Short Course in General Relativity (Longman mathematical texts) | 69 | 
| Ãîâîðóõèí Â., Öèáóëèí Á. — Êîìïüþòåð â ìàòåìàòè÷åñêîì èññëåäîâàíèè | 141 | 
| Ãîâîðóõèí Â., Öèáóëèí Á. — Êîìïüþòåð â ìàòåìàòè÷åñêîì èññëåäîâàíèè - Maple, Matlab, LaTex | 141 | 
| Rosenberg S. — The Laplacian on a Riemannian manifold | 22 | 
| Kline M. — Mathematical thought from ancient to modern times | 781, 783, 789 | 
| Moeller C. — The theory of relativity | 126, 127, 283, 284 | 
| Andrea Toselli, Olof Widlund — Springer Series in Computational Mathematics | see $H(curl, \Omega)$ |