Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Weintraub S. — Differential Forms. A complement to vector calculus | |
Guillemin V., Pollack A. — Differential topology | 178 |
Ãîâîðóõèí Â., Öèáóëèí Á. — Êîìïüþòåð â ìàòåìàòè÷åñêîì èññëåäîâàíèè | 141 |
Ìàíçîí Á.Ì. — Maple V power edition | 213 |
Heinbockel J.H. — Introduction to tensor calculus and continuum mechanics | 21, 173 |
Spiegel M.R. — Mathematical Handbook of Formulas and Tables | 120 |
Rudin W. — Principles of Mathematical Analysis | 181 |
Morse P., Feshbach H. — Methods of Theoretical Physics (part 1) | 39, 50 |
Morse P., Feshbach H. — Methods of Theoretical Physics (part 2) | 39, 50 |
Borisenko A.I., Tarapov I.E. — Vector and Tensor Analysis with Applications | 161—164 |
Ray J., Ray W. — Mac OS X Tiger Unleashed | 2nd 3rd 4th 5th 6th 7th |
Tennekes H., Lumley J.L. — A First Course in Turbulence | 76, 82 |
Wesseling P. — Principles of computational fluid dynamics | 6, 8, 500 |
Felsager B. — Geometry, particles and fields | 5, 366 |
Bauer M.D. — Linux Server Security | |
Abell M.L., Braselton J.P. — Mathematica by Example | 347, 349, 350 |
Lee J.M. — Introduction to Smooth Manifolds | 263 |
Widder D.V. — Advanced calculus | 65 |
Atkins P.W., Friedman R.S. — Molecular Quantum Mechanics | 440, 548 |
Williamson R.E., Crowell R.H., Trotter H.F. — Calculus of vector functions | 351, 372 |
Polya G., Latta G. — Complex Variables | 91 |
Bauer M.D. — Building Secure Servers With Linux | |
Edwards H. — Advanced Calculus: A Differential Forms Approach | 267 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis | 135 |
Franklin P. — Fourier Methods | 137, 139 |
Braselton J.P. — Maple by Example | 393, 395, 403 |
Monk P. — Finite Element Methods for Maxwell's Equations | 50 |
Sagan H. — Advanced Calculus of Real-Valued Functions of a Real Variable and Vector-Valued Functions of a Vector Variable | 533 |
Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 331 |
Edminister J.A. — Schaum's outline of electromagnetics | 47 |
Zung N.T. — Poisson Structures and their Normal Forms | 70 |
Rutherford D.E. — Vector Methods | 63, 124 |
Cooper J. — A Matlab Companion for Multivariable Calculus | 227, 231, 239 |
Ablowitz M.J., Fokas A.S. — Complex Variables: Introduction and Applications | 40 |
Weatherburn C. — Advanced Vector Analysis | 7, 12 |
Eringen A.C. — Mechanics of continua | 523, 552 |
Shankar R. — Basic Training In Mathematics | 172, 174, 177 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1 | 781, 785, 789 |
Greiner W. — Classical mechanics. Point particles and relativity | 87 |
Fripp A., Fripp J., Fripp M. — Just-in-Time Math for Engineers | 284, 290—292 |
Schey H.M. — DIV, Grad, Curl, and All That: An Informal Text on Vector Calculus | 75—90 |
Ayres F.J., Mendelson E. — Schaum's Outline of Calculus | 427 |
Kadanoff L.P. — Statistical physics | 361, 362 |
Antman S.S. — Nonlinear Problems of Elasticity | 381 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 3 | 781, 785, 789 |
Menzel D.H. — Mathematical Physics | 125, 141 |
Perry J. — The Calculus for Engineers | 134 |
Sokolnikoff I.S. — Higher Mathematics for Engineers and Physicists | 418, 422, 423, 438 |
Singer I.M., Thorpe J.A. — Lecture Notes on Elementary Topology and Geometry | 112 |
Konopinski E.J. — Electromagnetic fields and relativistic particles | 476 |
Lebedev L.P., Cloud M.J. — Tensor Analysis | 65 |
Sokolnikoff I.S. — Mathematics of Physics and Modern Engineering | 396 |
Robinson W.S. — Magnetic Phenomena - An Elementary Treatise | 48 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 2 | 781, 785, 789 |
Strichartz R.S. — The way of analysis | 508 |
Shapira Y. — Solving PDEs in C++: numerical methods in a unified object-oriented approach | 415 |
O'Neill B. — Semi-Riemannian Geometry: With Applications to Relativity | 95 |
Dubrovin B.A., Fomenko A.T., Novikov S.P. — Modern Geometry - Methods and Applications. Part 1. The Geometry of Surfaces, Transformation Groups and Fields | 240 |
Spivak M. — A Comprehensive Introduction to Differential Geometry (Vol.1) | 238 |
Munkres J.R. — Analysis on manifolds | 264 |
Nayfeh M.H., Brussel M.K. — Electricity and Magnetism | 16 |
Mercier A. — Analytical and canonical formalism in physics | 70, 89, 90, 93 |
Kleppner D., Kolenkow R. — An introduction to mechanics | 218 |
Char B.W. — First Leaves: A Tutorial Introduction to Maple V | 99 |
Auerbach F. — Modern magnetics | 42, 249 |
Kenzel W., Reents G., Clajus M. — Physics by Computer | 37 |
Desloge E.A. — Classical Mechanics. Volume 1 | 408 — 409, 414, 416, 425 |
Paoluzzi A. — Geometric Programming for Computer Aided Design by Alberto Paoluzzi: Book Cover * o Table of Contents Read a Sample Chapter Geometric Programming for Computer Aided Design | 192, 193 |
Spiegel M.R. — Schaum's mathematical handbook of formulas and tables | 120 |
Chan Man Fong C.F., De Kee D., Kaloni P.N. — Advanced Mathematics for Engineering and Sciences | 303, 375 |
Kuttler K. — Calculus, Applications and Theory | 593 |
Kompaneyets A.S., Yankovsky G. — Theoretical Physics | 96 |
Olver P.J., Shakiban C. — Applied linear. algebra | 338 |
Kreyszig E. — Advanced engineering mathematics | 414, 430, 472, A71 |
Fogiel M. — The optics problem solver | 5—22 |
Neff H.P.Jr. — Introductory electromagnetics | 16, 20—24 |
Lawden D.F. — An Introduction to Tensor Calculus, Relativity and Cosmology | 31, 118 |
Stewart I.W. — The Static and Dynamic Continuum Theory of Liquid Crystals: A Mathematical Introduction | 11 |
Rosenfeld B. — Geometry of Lie Groups | 14 |
Weyl H. — Space, Time, Matter | 60 |
Bird R.B., Armstrong R.C., Hassager O. — Dynamics of polymeric liquids (Vol. 1. Fluid mechanics) | (1)572 |
Kitahara M. — Boundary Integral Equation Methods in Eigenvalue Problems of Elastodynamics and Thin Plates | 12 |
Weinberg S. — Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity | 43, 106, 109, 116 |
Bayin S.S. — Mathematical Methods in Science and Engineering | 193 |
Arya A.P. — Introduction to Classical Mechanics | 164 |
Petrila T., Trif D. — Basics of Fluid Mechanics and Introduction to Computational Fluid Dynamics | 9 |
Carmeli M. — Classical Fields: General Gravity and Gauge Theory | 141, 373 |
Eringen A.C., Suhubi E.S. — Elastodynamics (vol.1) Finite motions | 307 |
Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity | 65 |
Efimov A.V. — Mathematical analysis: advanced topics. Part 2. Application of some methods of mathematical and functional analysis | 53 |
Browder A. — Mathematical Analysis: An Introduction | 289 |
Rutherford D.E. — Vector methods. Applied to differential geometry, mechanics, and potential theory | 63, 124 |
Ohanian H.C. — Classical Electrodynamics | 16, 25, 36 |
Sutton O.G. — Mathematics in action | 54 |
Hermann R. — Differential geometry and the calculus of variations | 3, 99 |
Harman T.L., Dabney J.B., Richert N.J. — Advanced Engineering Mathematicas with MATLAB | 619 |
Maxwell J.C. — Treatise on electricity and magnetism. Volume Two | 25 |
Atkins P. — Molecular Quantum Mechanics | 415, 518 |
Marathe K.B., Martucci G. — The mathematical foundations of gauge theories | 22 |
Davis H. F., Snider A. D. — Introduction to Vector Analysis | 97—99 |
Eddington A.S. — The mathematical theory of relativity | 67 |
Morse P.M. — Methods of theoretical physics | 39, 50 |
Gould H., Tobochnik J., Christian W. — An introduction to computer simulation methods | 386, 398—402 |
Weinreich G. — Geometrical vectors | 3, 57—60 |
Atkins P.W., Friedman R.S. — Molecular Quantum Mechanics | 415, 518 |
Hobbie R., Roth B. — Intermediate Physics for Medicine and Biology, | 213 |
Frankel T. — The geometry of physics: an introduction | 93 |
Barry Steven, Davis Stephen — Essential Mathematical Skills: For Students of Engineering, Science and Applied Mathematics | 108 |
Hildebrand F.B. — Advanced Calculus for Applications | 277, 294 |
Griffits D.J. — Introductions to electrodynamics | 16, 19, 552—553 |
Strang G. — Introduction to Applied Mathematics | 186, 196, 202, 205, 215, 217 |
Eddington A.S. — Mathematical Theory of Relativity | 67 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | 135 |
Blum E.K., Lototsky S.V. — Mathematics of Physics and Engineering | 138 |
Jeffreys H. — Methods Of Mathematical Physics | 90 |
Wrede R.C., Spiegel M. — Theory and problems of advanced calculus | 158, 159, 172—174 |
Synge J.L. — Relativity: The Special Theory | 317 |
Barut A.O. — Electrodynamics and Classical Theory of Fields and Particles | 38 |
Zeidler E. — Oxford User's Guide to Mathematics | 360, 364 |
Edward M. Purcell — Electricity and magnetism | 68—76 |
Lee A. — Mathematics Applied to Continuum Mechanics | 62 |
Attwood S.S. — Electric and Magnetic Fields | 439 |
Spivak M. — Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus | 88, 137 |
Hopf L., Nef W. — Introduction To The Differential Equations Of Physics | 52 |
Fung Y. — A First Course in Continuum Mechanics: for Physical and Biological Engineers and Scientists | 61 |
Woods F.S. — Advanced Calculus | 212 |
Frankel T. — The geometry of physics: An introduction | 93 |
Schutz B. — Geometrical Methods in Mathematical Physics | 136, 176 |
Zorich V.A., Cooke R. — Mathematical analysis II | 203, 260, 274 |
Zorich V. — Mathematical Analysis | 203, 260, 274 |
Weber E. — Electromagnetic Fields - Theory and Applications (Volume 1 - Mapping of Fields) | 541 |
Synge J. L. — Tensor Calculus | 135, 246 |
Bird R.B., Curtiss C.F., Armstrong R.C. — Dynamics of Polymeric Liquids. Vol. 2. Kinetic Theory | (1)572 |
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 202 |
Foster J., Nightingale J. — A Short Course in General Relativity (Longman mathematical texts) | 69 |
Ãîâîðóõèí Â., Öèáóëèí Á. — Êîìïüþòåð â ìàòåìàòè÷åñêîì èññëåäîâàíèè | 141 |
Ãîâîðóõèí Â., Öèáóëèí Á. — Êîìïüþòåð â ìàòåìàòè÷åñêîì èññëåäîâàíèè - Maple, Matlab, LaTex | 141 |
Rosenberg S. — The Laplacian on a Riemannian manifold | 22 |
Kline M. — Mathematical thought from ancient to modern times | 781, 783, 789 |
Moeller C. — The theory of relativity | 126, 127, 283, 284 |
Andrea Toselli, Olof Widlund — Springer Series in Computational Mathematics | see $H(curl, \Omega)$ |