Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Kharazishvili A.B. — Strange functions in real analysis | |
Bartle R.G. — The Elements of Real Analysis | 224 |
Apostol T.M. — Calculus (vol 1) | 122, 189 |
Hunter J.K., Nachtergaele B. — Applied Analysis | 209 |
Rudin W. — Principles of Mathematical Analysis | 101 |
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 1) Functional analysis | 356 |
Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 1) | 901 |
Falconer K. — Fractal Geometry: Mathematical Foundations and Applications | 181—182, 287 |
Evans L.C. — Partial Differential Equations | 523, 621 |
Christofides N. (ed.), Mingozzi A. (ed.), Toth P. (ed.) — Combinatorial Optimization | 73 |
Ben-Israel A., Greville T. — Generalized inverses: Theory and applications | 115 |
Allgower E.L., Georg K. — Introduction to numerical continuation methods | cf. (13.1.17) |
Golub G.H., Ortega J.M. — Scientific Computing and Differential Equations : An Introduction to Numerical Methods | 157 |
Cox D., Katz S. — Mirror symmetry and algebraic geometry | 39 (see also “$cpl(\sum)$”) |
Fulton W. — Introduction to toric varieties | 67 |
Hughes B.D. — Random Walks and Random Environments: Random Environments (òîì 2) | 328 |
Rudin W. — Real and Complex Analysis | 60 |
Matousek J. — Lectures on Discrete Geometry (some chapters) | 12 |
Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 2) | 901 |
Conway J.B. — Functions of One Complex Variable | 134 |
Webster R. — Convexity | 193, 217 |
Pommerenke C. — Univalent functions (Studia mathematica) | 44, 47 |
Schneider R. — Convex Bodies: The Brunn-Minkowski Theory | 21 |
Hayman W.K. — Multivalent Functions | 70 |
Fletcher R. — Practical methods of optimization. Volume 1: unconstrained optimization | 43, 53 |
Fletcher R. — Practical methods of optimization. Volume 2: constrained optimization | 64, 166 |
Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 109 |
Ferguson T.S. — Mathematical Statistics. A Decision Theoretic Approach | 76 |
Grotschel M., Lovasz L., Schrijver A. — Geometric Algorithms and Combinatorial Optimization | 49, 55—56, 188 |
Balakrishnan N., Nevzorov V.B. — A Primer on Statistical Distributions | 10 |
Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 245 |
Bapat R.B., Raghavan T.E., Rota G.C. (Ed) — Nonnegative Matrices and Applications | 165 |
Dacorogna B. — Direct Methods in the Calculus of Variations | 207 |
Hasumi M. — Hardy Classes on Infinitely Connected Riemann Surfaces | XI.1A |
Wise G.L., Hall E.B. — Counterexamples in Probability and Real Analysis | 21, 53, 59, 60, 127, 142 |
McEneaney W.M. — Max-Plus Methods for Nonlinear Control and Estimation | 13 |
Cao Z.-Q., Kim K.H., Roush F.W. — Incline algebra and applications | 100 |
Falconer K.J. — Techniques in Fractal Geometry | 4 |
Krantz S.G. — Function Theory of Several Complex Variables | 81, 114 |
Loeve M. — Probability Theory (part 1) | 161 |
Phelps R.R. — Convex Functions, Monotone Operators and Differentiability | 1 |
Pugh C.C. — Real Mathematical Analysis | 46 |
Lange K. — Optimization | 9, 95 |
Rockafellar R.T. — Convex analysis | 23 |
Ross S. — A First Course in Probability | 417 |
Reed M., Simon B. — Methods of Functional Analysis (in 4 volumes). Volume 1: Functional Analysis | 356 |
Atkinson K.E., Han W. — Theoretical Numerical Analysis: A Functional Analysis Framework | 129 |
Khuri A.I. — Advanced calculus with applications in statistics | 79, 84, 98 |
Simon B. — The Statistical Mechanics of Lattice Gases (vol 1) | 34 |
Lad F. — Operational Subjective Statistical Methods. A Mathematical, Philosophical, and Historical Introduction | 256 |
Spivak M. — Calculus | 204 |
Royden H.L. — Real Analysis | 108 |
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 4) Analysis of operators | 104 |
Yeomans J.M. — Statistical Mechanics of Phase Transitions | 19, 22 |
Polya G. — Problems and Theorems in Analysis: Theory of Functions. Zeros. Polynomials. Determinants. Number Theory. Geometry | VI 36 76 |
Motwani R., Raghavan P. — Randomized algorithms | 98 |
Sinha S.M. — Mathematical Programming: Theory and Methods | 94 |
Royden H.L. — Real Analysis | 108 |
Simon B. — Functional Integration and Quantum Physics | 93 |
Milovanovic G.V., Mitrinovic D.S., Rassias T.M. — Topics in Polynomials: Extremal Problems, Inequalities, Zeros | 101 |
Kuhn D. — Generalized Bounds For Convex Multistage Stochastic Programs | 35 |
Rudin W. — Real and complex analysis | 61 |
Giorgi G., Thierfelder J. — Mathematics of Optimization: Smooth and Nonsmooth Case | 70 |
Pedregal P. — Introduction to Optimization | 88 |
Duffie D. — Security Markets. Stochastic Models | 30 |
Apostol T.M. — Calculus: One-Variable Calculus with an Introduction to Linear Algebra, Vol. 1 | 122, 189 |
Naniewicz Z., Panagiotopoulos P.D. — Mathematical Theory of Hemivariational Inequalities and Applications | 17 |
Sheil-Small T. — Complex polynomials | 242 |
Phillips G.M. — Interpolation and Approximation by Polynomials | 259, 269, 270 |
David H., Nagaraja H. — Order Statistics (Wiley Series in Probability and Statistics) | 66, 107 |
Aubin T. — Nonlinear Analysis on Manifolds: Monge-Ampere Equations | 159, 174 |
Zeldovich Ya.B., Yaglom I.M. — Higher Math for Beginners | 234 |
Klerk de E. — Aspects of Semidefinite Programming | 149, 237 |
Bogachev V.I. — Measure Theory Vol.2 | I: 153 |
Intriligator M.D., Arrow K.J. — Handbook of Mathematical Economics (vol. 1) | 69n |
Aubin J.- P., Wilson S. — Optima and Equilibria: An Introduction to Nonlinear Analysis | 21—34, 242—247, 403, 405—406 |
Köthe G. — Topological vector spaces I | 181 |
Papadimitriou C.H., Steiglitz K. — Combinatorial Optimization: Algorithms and Complexity | 10—13 |
Mitzenmacher M., Upfal E. — Probability and Computing: Randomized Algorithms and Probabilistic Analysis | 24 |
Berger M., Cole M. (translator) — Geometry I (Universitext) | 11.8, 11.5.1, 11.8.10, 11.8.12, 11.9.15 |
Cercignani C. — Theory and Application of the Boltzman Equation | 115 |
Murota K. — Discrete convex analysis | 2, 9, 77 |
Grünbaum B. — Convex Polytopes | 13, 37 |
D'Angelo J.P., West D.B. — Mathematical Thinking: Problem-Solving and Proofs | xi, 233, 253, 320, 2, 334, 5, 397 |
Vanderbei R.J. — Linear Programming: Foundations and Extensions | 410, 414 |
Kullback S. — Information theory and statistics | 16, 34, 171 |
Pinsky M.A. — Introduction to Fourier Analysis and Wavelets | 170 |
Schulman L.S. — Techniques and applications of path integration | 174 |
Bertsekas D.P. — Dynamic programming and optimal control (Vol. 1) | 337 |
Wheeden R.L., Zygmund A. — Measure and integral. An introduction to real analysis | 118 |
Young R.M. — Excursions in Calculus: An Interplay of the Continuous and the Discrete | 199 |
Boroczky K. — Finite Packing and Covering | 329 |
Hormander L. — The analysis of linear partial differential operators I | 90, 91 |
Ash R.B., Doléans-Dade C.A. — Probability and Measure Theory | 253 |
Binmore K. — Fun and Games: A Text on Game Theory | 111, 173 |
Bóna M. — Introduction to Enumerative Combinatorics | 347 |
Steeb W.-H. — Problems and Solutions in theoretical and mathematical physics. Volume 1. Introductory level | 217 |
Balakrishnan N. (ed.), Rao C.R. (ed.) — Order Statistics - Theory and Methods | 75, 93 |
Tuy H. — Convex analysis and global optimization | 41 |
Marcus M., Minc H. — Survey of matrix theory and matrix inequalities | 101 |
van der Giessen E., Wu T. Y. — Advances in Applied Mechanics, Volume 34 | 200, 280—282, 308, 310 |
Drmota M., Tichy R.F. — Sequences, Discrepancies and Applications | 279 |
Korner T.W. — Exercises in Fourier Analysis | see "Concave function" |
Hughes B.D. — Random walks and random enviroments (Vol. 1. Random walks) | 45 |
van Dijk N. — Handbook of Statistics 16: Order Statistics: Theory & Methods | 75, 93 |
C. Caratheodory, F. Steinhardt — Theory of Functions of a Complex Variable. 2 Volumes | 289 |
Grenander U. — Toeplitz Forms and Their Applications | 20 |
Haraux A. — Nonlinear Evolution Equations - Global Behavior of Solutions | 49—52, 97, 170 |
Rosenblatt M. — Random processes | 34 |
Browder A. — Mathematical Analysis: An Introduction | 70, 78 |
Valentine F.A. — Convex Sets | 27—28, 129 |
Kreyszig E. — Introductory functional analysis with applications | 334 |
Adler R.J. — Geometry of random fields | 9, 53 |
Bapat R.B., Raghavan T.E.S. — Nonnegative Matrices and Applications | 165 |
Gloub G.H., Ortega J.M. — Scientific Computing and Differential Equations | 157 |
Bazaraa M.S., Jarvis J.J. — Linear Programming and Network Flows | 64 |
Semadini Z. — Banach Spaces of Continuous Functions. Vol. 1 | 402 |
DeGroot M.H. — Optimal statistical decisions | 97 |
Kazarinoff N. — Analytic inequalities | 81 |
Courant R., John F. — Introduction to Calculus and Analysis. Volume 1 | 357 |
Pearson R.K. — Mining imperfect data: dealing with contamination and incomplete records | 163 |
Schulz F., Dold A. (Ed), Eckmann B. (Ed) — Regularity Theory for Quasilinear Elliptic Systems and Monge-Ampere Equations in Two Dimensions | 109 |
Marsden J., Weinstein A. — Calculus 1 | 199 |
Krantz S.G. — Function theory of several complex variables | 81, 114 |
Bourgain J. — New Classes of Lp-Spaces | 5, 3 |
Kuttler K.L. — Modern Analysis | 503 |
Beckenbach E.F., Bellman R. — Inequalities | 16—19, 29, 30, 48, 50, 51, 84 |
Ash R. — Basic probability theory | 262 |
Bickel P., Doksum K. — Mathematical statistics | 518 |
Barbu V. — Analysis and control of nonlinear infinite dimensional systems | 57 |
Aubin J., Frankowska H. — Set-Valued Analysis | 222 |
Howes N.R — Modern Analysis and Topology | 317 |
Bear H.S. — A Primer of Lebesgue Integration | 153 |
Berger J.O. — Statistical decision theory and bayesian analysis | 38, 39, 45 |
Kadane J.B. (ed.) — Robustness of Bayesian Analyses | 225 |
Robinson S.M. — Convexity and Monotonicity in Finite-Dimensional Spaces | 91 |
Intriligator M.D. — Mathematical optimization and economic theory | 462 |
Greene R.E., Wu H. — Function Theory on Manifolds Which Possess a Pole | 7, 14 |
Hartmann A.K., Rieger H. — Optimization Algorithms in Physics | 136, 140 |
Schott J.R. — Matrix Analysis for Statistics | 349—353 |
De Barra G — Measure theory and integration | 5, 111, 163, 215 |
Morandi G. — Statistical Mechanics: An Intermediate Course | 25 |
Magaril-Il'yaev G.G., Tikhomirov V.M. — Convex Analysis: Theory and Applications | 1, 34 |
Mitrinović D.S., Vasić P.M. — Analytic inequalities | 15 |
Kanwal R.P. — Generalized functions: Theory and technique | 399 |
Falconer K. — Fractal geometry: mathematical foundations and applications | 181, 181—182, 287 |
Fuchssteiner B., Lusky W. — Convex Cones (North-Holland Mathematics Studies) | 34, 253 |
Reichl L.E. — Modern Course in Statistical Physics | 63 |
Epps T. — Quantitative Finance: Its Development, Mathematical Foundations, and Current Scope | 37 |
Bhatia R. — Matrix Analysis | 40, 41, 45, 87, 117, 157, 218, 240, 248, 265, 281 |
D'Angelo J.P., West D.B. — Mathematical thinking: problem-solving and proofs | xi, 233, 253, 320—322, 334—335, 397 |
Plischke M., Bergersen B. — Equilibrium statistical physics | 28, 114 |
Morrey C. — Multiple integrals in the calculus of variations | 21 |
Beckenbach E., Bellman R. — Inequalities (Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge) | 16—19, 29, 30, 48, 50, 51, 84 |
Mangasarian O. — Nonlinear programming | 55 |
Giorgi G., Guerraggio A., Thierfelder J. — Mathematics of optimization | 70 |
Knuth D.E. — Selected papers on discrete mathematics | 538—539 |
J. M. Borwein, Qi.Zhu — Techniques of Variational Analysis (CMS Books in Mathematics) | 111 |