Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
Ìåõìàòÿíàì
square Ïåðâûé êóðñ

square Âòîðîé êóðñ

square Òðåòèé êóðñ

square ×åòâåðòûé êóðñ

square Ïÿòûé êóðñ
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
Êðàñîòà
blank
blank
Ðåçóëüòàò ïîèñêà

Ïîèñê êíèã, ñîäåðæàùèõ: Convex function



ÊíèãàÑòðàíèöû äëÿ ïîèñêà
Kharazishvili A.B. — Strange functions in real analysis
Bartle R.G. — The Elements of Real Analysis224
Apostol T.M. — Calculus (vol 1)122, 189
Hunter J.K., Nachtergaele B. — Applied Analysis209
Rudin W. — Principles of Mathematical Analysis101
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 1) Functional analysis356
Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 1)901
Falconer K. — Fractal Geometry: Mathematical Foundations and Applications181—182, 287
Evans L.C. — Partial Differential Equations523, 621
Christofides N. (ed.), Mingozzi A. (ed.), Toth P. (ed.) — Combinatorial Optimization73
Ben-Israel A., Greville T. — Generalized inverses: Theory and applications115
Allgower E.L., Georg K. — Introduction to numerical continuation methodscf. (13.1.17)
Golub G.H., Ortega J.M. — Scientific Computing and Differential Equations : An Introduction to Numerical Methods157
Cox D., Katz S. — Mirror symmetry and algebraic geometry39 (see also “$cpl(\sum)$”)
Fulton W. — Introduction to toric varieties67
Hughes B.D. — Random Walks and Random Environments: Random Environments (òîì 2)328
Rudin W. — Real and Complex Analysis60
Matousek J. — Lectures on Discrete Geometry (some chapters)12
Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 2)901
Conway J.B. — Functions of One Complex Variable134
Webster R. — Convexity193, 217
Pommerenke C. — Univalent functions (Studia mathematica)44, 47
Schneider R. — Convex Bodies: The Brunn-Minkowski Theory21
Hayman W.K. — Multivalent Functions70
Fletcher R. — Practical methods of optimization. Volume 1: unconstrained optimization43, 53
Fletcher R. — Practical methods of optimization. Volume 2: constrained optimization64, 166
Folland J.B. — Real Analysis: Modern Techniques and Their Applications109
Ferguson T.S. — Mathematical Statistics. A Decision Theoretic Approach76
Grotschel M., Lovasz L., Schrijver A. — Geometric Algorithms and Combinatorial Optimization49, 55—56, 188
Balakrishnan N., Nevzorov V.B. — A Primer on Statistical Distributions10
Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists245
Bapat R.B., Raghavan T.E., Rota G.C. (Ed) — Nonnegative Matrices and Applications165
Dacorogna B. — Direct Methods in the Calculus of Variations207
Hasumi M. — Hardy Classes on Infinitely Connected Riemann SurfacesXI.1A
Wise G.L., Hall E.B. — Counterexamples in Probability and Real Analysis21, 53, 59, 60, 127, 142
McEneaney W.M. — Max-Plus Methods for Nonlinear Control and Estimation13
Cao Z.-Q., Kim K.H., Roush F.W. — Incline algebra and applications100
Falconer K.J. — Techniques in Fractal Geometry4
Krantz S.G. — Function Theory of Several Complex Variables81, 114
Loeve M. — Probability Theory (part 1)161
Phelps R.R. — Convex Functions, Monotone Operators and Differentiability1
Pugh C.C. — Real Mathematical Analysis46
Lange K. — Optimization9, 95
Rockafellar R.T. — Convex analysis23
Ross S. — A First Course in Probability417
Reed M., Simon B. — Methods of Functional Analysis (in 4 volumes). Volume 1: Functional Analysis356
Atkinson K.E., Han W. — Theoretical Numerical Analysis: A Functional Analysis Framework129
Khuri A.I. — Advanced calculus with applications in statistics79, 84, 98
Simon B. — The Statistical Mechanics of Lattice Gases (vol 1)34
Lad F. — Operational Subjective Statistical Methods. A Mathematical, Philosophical, and Historical Introduction256
Spivak M. — Calculus204
Royden H.L. — Real Analysis108
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 4) Analysis of operators104
Yeomans J.M. — Statistical Mechanics of Phase Transitions19, 22
Polya G. — Problems and Theorems in Analysis: Theory of Functions. Zeros. Polynomials. Determinants. Number Theory. GeometryVI 36 76
Motwani R., Raghavan P. — Randomized algorithms98
Sinha S.M. — Mathematical Programming: Theory and Methods94
Royden H.L. — Real Analysis108
Simon B. — Functional Integration and Quantum Physics93
Milovanovic G.V., Mitrinovic D.S., Rassias T.M. — Topics in Polynomials: Extremal Problems, Inequalities, Zeros101
Kuhn D. — Generalized Bounds For Convex Multistage Stochastic Programs35
Rudin W. — Real and complex analysis61
Giorgi G., Thierfelder J. — Mathematics of Optimization: Smooth and Nonsmooth Case70
Pedregal P. — Introduction to Optimization88
Duffie D. — Security Markets. Stochastic Models30
Apostol T.M. — Calculus: One-Variable Calculus with an Introduction to Linear Algebra, Vol. 1122, 189
Naniewicz Z., Panagiotopoulos P.D. — Mathematical Theory of Hemivariational Inequalities and Applications17
Sheil-Small T. — Complex polynomials242
Phillips G.M. — Interpolation and Approximation by Polynomials259, 269, 270
David H., Nagaraja H. — Order Statistics (Wiley Series in Probability and Statistics)66, 107
Aubin T. — Nonlinear Analysis on Manifolds: Monge-Ampere Equations159, 174
Zeldovich Ya.B., Yaglom I.M. — Higher Math for Beginners234
Klerk de E. — Aspects of Semidefinite Programming149, 237
Bogachev V.I. — Measure Theory Vol.2I: 153
Intriligator M.D., Arrow K.J. — Handbook of Mathematical Economics (vol. 1)69n
Aubin J.- P., Wilson S. — Optima and Equilibria: An Introduction to Nonlinear Analysis21—34, 242—247, 403, 405—406
Köthe G. — Topological vector spaces I181
Papadimitriou C.H., Steiglitz K. — Combinatorial Optimization: Algorithms and Complexity10—13
Mitzenmacher M., Upfal E. — Probability and Computing: Randomized Algorithms and Probabilistic Analysis24
Berger M., Cole M. (translator) — Geometry I (Universitext)11.8, 11.5.1, 11.8.10, 11.8.12, 11.9.15
Cercignani C. — Theory and Application of the Boltzman Equation115
Murota K. — Discrete convex analysis2, 9, 77
Grünbaum B. — Convex Polytopes13, 37
D'Angelo J.P., West D.B. — Mathematical Thinking: Problem-Solving and Proofsxi, 233, 253, 320, 2, 334, 5, 397
Vanderbei R.J. — Linear Programming: Foundations and Extensions410, 414
Kullback S. — Information theory and statistics16, 34, 171
Pinsky M.A. — Introduction to Fourier Analysis and Wavelets170
Schulman L.S. — Techniques and applications of path integration174
Bertsekas D.P. — Dynamic programming and optimal control (Vol. 1)337
Wheeden R.L., Zygmund A. — Measure and integral. An introduction to real analysis118
Young R.M. — Excursions in Calculus: An Interplay of the Continuous and the Discrete199
Boroczky K. — Finite Packing and Covering329
Hormander L. — The analysis of linear partial differential operators I90, 91
Ash R.B., Doléans-Dade C.A. — Probability and Measure Theory253
Binmore K. — Fun and Games: A Text on Game Theory111, 173
Bóna M. — Introduction to Enumerative Combinatorics347
Steeb W.-H. — Problems and Solutions in theoretical and mathematical physics. Volume 1. Introductory level217
Balakrishnan N. (ed.), Rao C.R. (ed.) — Order Statistics - Theory and Methods75, 93
Tuy H. — Convex analysis and global optimization41
Marcus M., Minc H. — Survey of matrix theory and matrix inequalities101
van der Giessen E., Wu T. Y. — Advances in Applied Mechanics, Volume 34200, 280—282, 308, 310
Drmota M., Tichy R.F. — Sequences, Discrepancies and Applications279
Korner T.W. — Exercises in Fourier Analysissee "Concave function"
Hughes B.D. — Random walks and random enviroments (Vol. 1. Random walks)45
van Dijk N. — Handbook of Statistics 16: Order Statistics: Theory & Methods75, 93
C. Caratheodory, F. Steinhardt — Theory of Functions of a Complex Variable. 2 Volumes289
Grenander U. — Toeplitz Forms and Their Applications20
Haraux A. — Nonlinear Evolution Equations - Global Behavior of Solutions49—52, 97, 170
Rosenblatt M. — Random processes34
Browder A. — Mathematical Analysis: An Introduction70, 78
Valentine F.A. — Convex Sets27—28, 129
Kreyszig E. — Introductory functional analysis with applications334
Adler R.J. — Geometry of random fields9, 53
Bapat R.B., Raghavan T.E.S. — Nonnegative Matrices and Applications165
Gloub G.H., Ortega J.M. — Scientific Computing and Differential Equations157
Bazaraa M.S., Jarvis J.J. — Linear Programming and Network Flows64
Semadini Z. — Banach Spaces of Continuous Functions. Vol. 1402
DeGroot M.H. — Optimal statistical decisions97
Kazarinoff N. — Analytic inequalities81
Courant R., John F. — Introduction to Calculus and Analysis. Volume 1357
Pearson R.K. — Mining imperfect data: dealing with contamination and incomplete records163
Schulz F., Dold A. (Ed), Eckmann B. (Ed) — Regularity Theory for Quasilinear Elliptic Systems and Monge-Ampere Equations in Two Dimensions109
Marsden J., Weinstein A. — Calculus 1199
Krantz S.G. — Function theory of several complex variables81, 114
Bourgain J. — New Classes of Lp-Spaces5, 3
Kuttler K.L. — Modern Analysis503
Beckenbach E.F., Bellman R. — Inequalities16—19, 29, 30, 48, 50, 51, 84
Ash R. — Basic probability theory262
Bickel P., Doksum K. — Mathematical statistics518
Barbu V. — Analysis and control of nonlinear infinite dimensional systems57
Aubin J., Frankowska H. — Set-Valued Analysis222
Howes N.R — Modern Analysis and Topology317
Bear H.S. — A Primer of Lebesgue Integration153
Berger J.O. — Statistical decision theory and bayesian analysis38, 39, 45
Kadane J.B. (ed.) — Robustness of Bayesian Analyses225
Robinson S.M. — Convexity and Monotonicity in Finite-Dimensional Spaces91
Intriligator M.D. — Mathematical optimization and economic theory462
Greene R.E., Wu H. — Function Theory on Manifolds Which Possess a Pole7, 14
Hartmann A.K., Rieger H. — Optimization Algorithms in Physics136, 140
Schott J.R. — Matrix Analysis for Statistics349—353
De Barra G — Measure theory and integration5, 111, 163, 215
Morandi G. — Statistical Mechanics: An Intermediate Course25
Magaril-Il'yaev G.G., Tikhomirov V.M. — Convex Analysis: Theory and Applications1, 34
Mitrinović D.S., Vasić P.M. — Analytic inequalities15
Kanwal R.P. — Generalized functions: Theory and technique399
Falconer K. — Fractal geometry: mathematical foundations and applications181, 181—182, 287
Fuchssteiner B., Lusky W. — Convex Cones (North-Holland Mathematics Studies)34, 253
Reichl L.E. — Modern Course in Statistical Physics63
Epps T. — Quantitative Finance: Its Development, Mathematical Foundations, and Current Scope37
Bhatia R. — Matrix Analysis40, 41, 45, 87, 117, 157, 218, 240, 248, 265, 281
D'Angelo J.P., West D.B. — Mathematical thinking: problem-solving and proofsxi, 233, 253, 320—322, 334—335, 397
Plischke M., Bergersen B. — Equilibrium statistical physics28, 114
Morrey C. — Multiple integrals in the calculus of variations21
Beckenbach E., Bellman R. — Inequalities (Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge)16—19, 29, 30, 48, 50, 51, 84
Mangasarian O. — Nonlinear programming55
Giorgi G., Guerraggio A., Thierfelder J. — Mathematics of optimization70
Knuth D.E. — Selected papers on discrete mathematics538—539
J. M. Borwein, Qi.Zhu — Techniques of Variational Analysis (CMS Books in Mathematics)111
blank
HR
@Mail.ru
© Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01!| Valid CSS! Î ïðîåêòå