Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Heinbockel J.H. — Introduction to tensor calculus and continuum mechanics | 18, 43, 56, 69, 103, 194 |
Spiegel M.R. — Mathematical Handbook of Formulas and Tables | 50, 126 |
Apostol T.M. — Calculus (vol 2) | 293,410, 414 |
Keisler H.J. — Elementary calculus | 775 |
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 90.C, App. A, Table 3.V |
Morse P., Feshbach H. — Methods of Theoretical Physics (part 1) | 514, 658 |
Morse P., Feshbach H. — Methods of Theoretical Physics (part 2) | 514, 658 |
Borisenko A.I., Tarapov I.E. — Vector and Tensor Analysis with Applications | 83 |
Apostol T.M. — Mathematical Analysis | 419 |
Hayek S.I. — Advanced mathematical methods in science and engineering | 629 |
Ben-Israel A., Greville T. — Generalized inverses: Theory and applications | 285 |
Olver P.J. — Equivalence, Invariants and Symmetry | 9, 42 |
Oprea J. — Differential Geometry and Its Applications | 57—58 |
Hoffman J.D. — Numerical Methods for Engineers and Scientists | 563 |
Schweizer W. — Numerical quantum dynamics | 161 |
Lee J.M. — Riemannian Manifolds: an Introduction to Curvature | 82 |
Lee J.M. — Introduction to Smooth Manifolds | 104 |
Smirnov V.I. — Higher mathematics. Vol.2 | 185 |
Jennings G.A. — Modern Geometry with Applications | 47 |
Maple 8. Learning guide | 114 |
Sadd M.H. — Elasticity: theory, applications, and numerics | 20 |
Williamson R.E., Crowell R.H., Trotter H.F. — Calculus of vector functions | 188 |
Dill K.A., Bromberg S. — Molecular Driving Forces: Statistical Thermodynamics in Chemistry and Biology | 312 |
Adams R.A. — Sobolev Spaces | 130 |
Edwards H. — Advanced Calculus: A Differential Forms Approach | 45 |
Franklin P. — Fourier Methods | 130 |
Miessler G., Tarr D.A. — Inorganic Chemistry | 28 |
Kythe P.K., Schaferkotter M.R. — Partial Differential Equations and Mathematica | 144ff |
Braselton J.P. — Maple by Example | 221 |
Monk P. — Finite Element Methods for Maxwell's Equations | 425 |
Sagan H. — Advanced Calculus of Real-Valued Functions of a Real Variable and Vector-Valued Functions of a Vector Variable | 227, 436 |
Strauss W.A. — Partial Differential Equations: An Introduction | 152, 257 |
Cooper J. — A Matlab Companion for Multivariable Calculus | 113, 190 |
Mayer J.E., Mayer M.G. — Statistical Mechanics | 35 |
Greiner W. — Quantum mechanics. An introduction | 193 |
Shankar R. — Basic Training In Mathematics | 66 |
Jackson D. — Fourier Series and Orthogonal Polynomials | 106—109, 118—120, 189 |
McMano D., Topa D.M. — A Beginner's Guide to Mathematica | 628—629, 631 |
Ratcliffe J.G. — Foundations of Hyperbolic Manifolds | 44 |
Agoshkov V.I., Dubovsky P.B. — Methods for Solving Mathematical Physics Problems | 58 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 261 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1 | 261 |
Greiner W. — Classical mechanics. Point particles and relativity | 74, 104 |
Fripp A., Fripp J., Fripp M. — Just-in-Time Math for Engineers | 294 |
Walecka J.D. — Fundamentals of statistical mechanics | 10, 97, 203, 281 |
Ayres F.J., Mendelson E. — Schaum's Outline of Calculus | 456 |
Kerker M. — The scattering of light | 32 |
Knuth D.E. — The art of computer programming (vol. 2 Seminumerical Algorithms) | 59 |
Lang S.A. — Undergraduate Analysis | 599 |
Ito K. — Encyclopedic Dictionary of Mathematics | 90.C, App. A, Table 3.V |
Menzel D.H. — Mathematical Physics | 182 |
Kakosyan A.V., Klebanov L.B., Melamed J.A. — Characterization of Distributions by the Method of Intensively Monotone Operators | 94 |
Sokolnikoff I.S. — Higher Mathematics for Engineers and Physicists | 152, 185, 382, 386, 434, 439 |
Sokolnikoff I.S. — Mathematics of Physics and Modern Engineering | 360, 367p |
Greenberg M.D. — Advanced engineering mathematics | 705, 752, 786, 821, 1081 |
Brocker Th., Dieck T.T. — Representations of Compact Lie Groups | 120 |
Knuth D.E. — The art of computer programming (Vol. 2. Seminumerical algorithms) | 57 |
Strichartz R.S. — The way of analysis | 584, 593 |
Bao G., Cowsar L., Masters W. — Mathematical Modeling in Optical Science | 77, 79 |
Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds | 61, 124 |
Eschenauer H., Olhoff N., Schnell W. — Applied structural mechanics : fundamentals of elasticity, load-bearing structures, structural optimization | 26, 30 |
Kalinins E.G. — Separation of Variables for Riemannian Spaces of Constant Curvature | 65, 97 |
Fomenko À.Ò., Mishehenko A.S. — A Short Course in Differential Geometry and Topology | 2, 8 |
Natterer F. — The Mathematics of Computerized Tomography (Classics in Applied Mathematics) | 186 |
Englert B.G. (Ed) — Quantum Mechanics | 60, 173, 295 |
Jackson J.D. — Classical electrodynamics | 54 |
Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory | 80 |
Betten J. — Creep Mechanics | 30 |
Hanna J.R., Rowland J.H. — Fourier Series, Transforms, and Boundary Value Problems | 142, 158 |
Asmar N.H. — Partial Differential Equations with fourier series and boundary value problems | 196 |
Pipes L.A. — Applied Mathemattics for Engineers and Physicists | 357 |
Stratton J.A. — Electromagnetic Theory | 52, 199 |
Spiegel M.R. — Schaum's mathematical handbook of formulas and tables | 50, 126 |
Kuttler K. — Calculus, Applications and Theory | 483 |
Graff K.F. — Wave motion in elastic solids | 601—2 |
Kreyszig E. — Advanced engineering mathematics | 588, A71 |
O'Neill B. — The Geometry of Kerr Black Holes | 43—44 |
Ding H., Chen W., Zhang L. — Elasticity of Transversely Isotropic Materials | 2, 5, 7, 15, 19, 21, 26, 32, 327, 345, 364, 387, 388, 396 |
Gilmore R. — Lie Groups, Lie Algebras and Some of Their Applications | 170, 393 |
Montenbruck O. — Practical Ephemeris Calculations | 1 |
Bird R.B., Armstrong R.C., Hassager O. — Dynamics of polymeric liquids (Vol. 1. Fluid mechanics) | (1)580, 585 |
Basdevant J.-L., Dalibard J. — Quantum Mechanics | 197, 210 |
Steeb W.-H. — Problems and Solutions in theoretical and mathematical physics. Volume 1. Introductory level | 136 |
McQuistan R.B. — Scalar and Vector Fields: a Physical Interpretation | 89 |
Tannehill J.C., Pletcher R.H., Anderson D.A. — Computational Fluid Mechanics and Heat Transfer | 270—271 |
Thompson Philip A. — Compressible-fluid dynamics | 635 |
Carmeli M. — Classical Fields: General Gravity and Gauge Theory | 381 |
Ohanian H.C. — Classical Electrodynamics | 21 |
Novikov S.P., Fomenko A.T. — Basic elements of differential geometry and topology | 17, 21 |
Schwartz M. — Principles of electrodynamics | 67—69 |
Courant R., Hilbert D. — Methods of Mathematical Physics. Volume 1 | 225 |
Aliprantis C. — Principles of real analysis | 396 |
Stratton J.A. — Electromagnetic Theory | 52, 199 |
Kythe P.K., Puri P. — Partial differential equations and Mathematica | 144ff |
Mayer J.E., Goeppert Mayer M. — Statistical mechanics | 35 |
Davis H. F., Snider A. D. — Introduction to Vector Analysis | 188 |
Hildebrand F.B. — Methods of Applied Mathematics | 157 |
Lena P., Lebrun F. — Observational Astrophysics (Astronomy and Astrophysics Library Series) | 385 |
Morse P.M. — Methods of theoretical physics | 514, 658 |
Zhang K., Li D. — Electromagnetic Theory for Microwaves and Optoelectronics | 179, 193 |
Copeland A.H. — Geometry, algebra, and trigonometry by vector methods | 272 |
Lang S. — Undergraduate analysis | 599 |
Weinreich G. — Geometrical vectors | 74—75, 80, 105, 106 |
Hugh D. Young, Roger A. Freedman — University physics with modern physics | 1392 |
Dunkl C.F., Xu Y. — Orthogonal Polynomials of Several Variables | 35 |
Loomis L.H., Sternberg S. — Advanced calculus | 345 (Ex. 11.4) |
Lane S.M. — Mathematics, form and function | 223 |
Lemm J.M. — Mathematical elasticity. Theory of shells | 15, 67 |
Hobbie R., Roth B. — Intermediate Physics for Medicine and Biology, | 577 |
Hildebrand F.B. — Advanced Calculus for Applications | 304 |
Griffits D.J. — Introductions to electrodynamics | 38—43 |
Blum E.K., Lototsky S.V. — Mathematics of Physics and Engineering | 142 |
Wrede R.C., Spiegel M. — Theory and problems of advanced calculus | 162, 174, 175 |
Miller W. — Symmetry and Separation of Variables | 106, 165, 170, 172, 176, 191, 192, 198, 201, 203, 207, 212, 214, 218, 219, 222, 233 |
Apostol T.M. — Calculus (Volume 2): Multi-Variable Calculus and Linear Algebra with Applications | 293, 410, 414 |
Zeidler E. — Oxford User's Guide to Mathematics | 346, 507 |
Jahne B., Haubecker H. — Computer vision and applications | 23 |
Rektorys K. — Survey of Applicable Mathematics.Volume 2. | I 196, I 593 |
Gullberg J. — Mathematics: from the birth of numbers | 583 |
Snygg J. — Clifford algebra: a computational tool for physicists | 45, 52—53 |
Vaisala J. — Lectures On N-Dimensional Quasiconformal Mappings | 50 |
Franklin P. — Differential and integral calculus | 572 |
Akenine-Möller T. — Real-Time Rendering | 154, 561 |
Carr G.S. — Formulas and Theorems in Pure Mathematics | CD.1, CM.1, ap2 |
Flanders H. — Differential Forms with Applications to the Physical Sciences | 34 |
Snygg J. — Clifford algebra: a computational tool for physicists | 45, 52—53 |
Tannehill J.C., Anderson D.A., Pletcher R.H. — Computational Fluid Mechanics and Heat Transfer | 270—271 |
Bird R.B., Curtiss C.F., Armstrong R.C. — Dynamics of Polymeric Liquids. Vol. 2. Kinetic Theory | (1)580, 585 |
Jackson J.D. — Classical electrodynamics | 95 |
Apostol T. — Mathematical Analysis, Second Edition | 419 |
Elschner J. — Singular Ordinary Differential Operators and Pseudodifferential Equations | 94 |