Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Kadison R.V., Ringrose J.R. — Fundamentals of the theory of operator algebras (vol. 1) Elementary Theory | 95 |
Agarwal R.P. — Difference Equations and Inequalities. Theory, Methods and Applications. | 10, 857 |
Apostol T.M. — Calculus (vol 1) | 575 |
Hunter J.K., Nachtergaele B. — Applied Analysis | 153 |
Rudin W. — Principles of Mathematical Analysis | 186, 187 |
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 1) Functional analysis | 46 |
Apostol T.M. — Calculus (vol 2) | 29 |
Bazant Z.P., Cedolin L. — Stability of structures : elastic, inelastic, fracture, and damage theories | 21 |
Lang S. — Algebra | 679 |
Bulirsch R., Stoer J. — Introduction to numerical analysis | 88 |
Mauch S. — Introduction to Methods of Applied Mathematics or Advanced Mathematical Methods for Scientists and Engineers | 771, 802 |
Hayek S.I. — Advanced mathematical methods in science and engineering | 135, 137, 162, 164, 166, 333 |
Conte S.D., de Boor C. — Elementary numerical analysis - an algorithmic approach | 269 |
Meyer C.D. — Matrix analysis and applied linear algebra | 299 |
Silverman J.H. — The arithmetic of elliptic curves | 345 |
Bergman S. — The Kernel Function and Conformal Mapping | 2, 119 |
Rudin W. — Real and Complex Analysis | 81, 91 |
Weinberger H.F. — First course in partial defferential equations with complex variables and transform methods | 72 |
Widder D.V. — Advanced calculus | 324, 327 |
Bhanu B., Pavlidis I. — Computer Vision Beyond the Visible Spectrum | 283 |
Benson D. — Mathematics and music | 30, 33 |
Katznelson Y. — Introduction to Harmonic Analysis | 3, 34 |
Birman M.S., Solomyak M.Z. — Spectral Theory of Self-Adjoint Operators in Hilbert Space | 23 |
Curtain R.F., Pritchard A.J. — Functional Analysis in Modern Applied Mathematics | 61 |
Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications | 117 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis | 398, 399, 401 |
Kythe P.K., Schaferkotter M.R. — Partial Differential Equations and Mathematica | 88 |
Hogben L. — Handbook of Linear Algebra | 5—4 |
Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 358 |
Shafarevich I.R., Kostrikin A.I. (ed.) — Basic Notions of Algebra | 164 |
Debnath L. — Linear Partial Differential Equations for Scientists and Engineers | 173 |
Tompkins H.G., Irene E.A. — Handbook of Ellipsometry | 15, 42, 246, 468, 469, 488, 492, 504, 505, 511, 512, 514, 515, 520, 522, 682, 683, 691 |
Young R.M. — An Introduction to Non-Harmonic Fourier Series, Revised Edition | 6, 9 |
Strauss W.A. — Partial Differential Equations: An Introduction | 102—104, 113, 116, 248 |
Robert A. — Non-Standard Analysis | 8.2.1 |
Ablowitz M.J., Fokas A.S. — Complex Variables: Introduction and Applications | 269 |
Lang S. — Diophantine Geometry | 130 |
Goldberg M.A. (ed.) — Solution Methods for Integral Equations | 229 |
Reed M., Simon B. — Methods of Functional Analysis (in 4 volumes). Volume 1: Functional Analysis | 46 |
Atkinson K.E., Han W. — Theoretical Numerical Analysis: A Functional Analysis Framework | 162 |
Sandor J., Mitrinovic D.S., Crstici B. — Handbook of Number Theory II | 184, 544 |
Kahane J.P., Bollobas B. (Ed) — Some Random Series of Functions | xii, 47, 60 |
Kaczor W.J. — Problems in Mathematical Analysis III: Integration | 62 |
Polya G. — Problems and Theorems in Analysis: Theory of Functions. Zeros. Polynomials. Determinants. Number Theory. Geometry | 75, VI 29 76 |
Lang S.A. — Undergraduate Analysis | 294, 295 |
Altmann S.L. — Band Theory of Solids: An Introduction from the Point of View of Symmetry | 81 (4—9.19) |
Iwaniec H., Kowalski E. — Analytic number theory | 174 |
Lang S. — Real Analysis | 157 |
Milovanovic G.V., Mitrinovic D.S., Rassias T.M. — Topics in Polynomials: Extremal Problems, Inequalities, Zeros | 159 |
Sokolnikoff I.S. — Higher Mathematics for Engineers and Physicists | 65 |
Rudin W. — Real and complex analysis | 82, 91 |
Lay D.C. — Linear Algebra And Its Applications | 398 |
Zauderer E. — Partial Differential Equations of Applied Mathematics | 180, 209, 338, 518 |
Kuznetsov N., Mazya V., Vainberq B. — Linear Water Waves: A Mathematical Approach | 462, 476, 482, 483 |
Stahl H., Totik V. — General Orthogonal Polynomials | 212 |
Shimura G. — Introduction to Arithmetic Theory of Automorphic Functions | 29 |
Sokolnikoff I.S. — Mathematics of Physics and Modern Engineering | 175, 196 |
Elliot P.D.T.A. — Probabilistic Number Theory One | 66 |
Greenberg M.D. — Advanced engineering mathematics | 851 |
Apostol T.M. — Calculus: One-Variable Calculus with an Introduction to Linear Algebra, Vol. 1 | 575 |
Berndt B.C., Evans R.J., Williams K.S. — Gauss and Jacobi Sums | 211, 292 |
Karman T., Biot A.M. — Mathematical Methods in Engineering | 325—327 |
Blyth T.S., Robertson E.F. — Further Linear Algebra | 20 |
Bachman G., Beckenstein E. — Fourier And Wavelet Analysis | 104, 112, 144 |
Stakgold I. — Green's Functions and Boundary Value Problems | 128, 279 |
Helemskii A.Ya. — Lectures and Exercises on Functional Analysis, Vol. 233 | 73, 413 |
Kadison R.V., Ringrose J.R. — Fundamentals of the Theory of Operator Algebras (vol. 2) Advanced Theory | 95 |
Chabert J.-L., Weeks C., Barbin E. — A History of Algorithms: From the Pebble to the Microchip | 422, 425 |
Strichartz R.S. — The way of analysis | 522, 532, 676 |
Kolmogorov A.N., Fomin S.V. — Introductory real analysis | 149, 152, 165 |
Chung F.R.K. — Spectral Graph Theory | 43 |
Natterer F. — The Mathematics of Computerized Tomography (Classics in Applied Mathematics) | 182 |
Tricomi F.G. — Integral equations | 85ff. |
Young R.M. — An Introduction to Nonharmonic Fourier Series | 6, 9 |
Feller W. — Introduction to probability theory and its applications (Volume II) | 628, 634, 647—648 |
Pope S.B. — Turbulent Flows | 684 |
Babin A.V., Vishik M.I. — Attractors of Evolution Equations | 15 |
Silverman J.H. — Advanced Topics in the Arithmetic of Elliptic Curves | see also q-expansion |
Miller W. — Symmetry Groups and Their Applications | 412 |
Hamming R.W. — Numerical methods for scientists and engineers | 447 |
Mclachlan D. — X-ray crystal structure | 3, 25 |
Avery J. — Creation and Annihilation Operators | 17, 102 |
Stahl A. — Physics with tau leptons | 17, 102 |
Olver P.J., Shakiban C. — Applied linear. algebra | 286 |
Clemens C.H. — Scrapbook of Complex Curve Theory | 136 |
Kaiser D. — A Friendly Guide to Wavelets | 27 |
Kreyszig E. — Advanced engineering mathematics | 480, 487 |
Slater J.C. — Quantum Theory of Atomic Structure vol1 | 87 |
Simmons G.F. — Introduction to topology and modern analysis | 256, 257 |
Elliot P.D.T.A. — Probabilistic Number Theory Two: Central Limit Theorems | 66 |
Clausen M. — Fast Fourier transforms | 164 |
Cotterill R.M.J. — Biophysics: An Introduction | 86 |
Luke Y.L. — Mathematical Functions and Their Approximations | 430, 442 |
Saxe K. — Beginning functional analysis | 82 |
Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142) | 98, 176 |
Beutler G. — Methods of Celestial Mechanics: Volume I: Physical, Mathematical, and Numerical Principles | II 397 |
Smithies F., Hall P. (ed.) — INTEGRAL EQUATIONS (No. 49) | 56 |
Kaiser G. — Friendly Guide to Wavelets | 27 |
Carl D. Meyer — Matrix Analysis and Applied Linear Algebra Book and Solutions Manual | 299 |
Christensen O., Christensen K.L. — Approximation Theory: From Taylor Polynomials to Wavelets | 52 |
Graham J., Baldock R. — Image processing and analysis. A practical approach | 94 |
Rektorys K. — Survey of applicable mathematics | 698, 703, 1005 |
Adomian G. — Stochastic Systems | 77 |
Browder A. — Mathematical Analysis: An Introduction | 164 |
Lang S. — Algebra | 679 |
Sutton O.G. — Mathematics in action | 101 |
Marks R.J.II. — The Joy of Fourier | 2, 17, 72, 98, 101, 741 |
Kreyszig E. — Introductory functional analysis with applications | 157, 165 |
Harman T.L., Dabney J.B., Richert N.J. — Advanced Engineering Mathematicas with MATLAB | 92, 362 |
Shilov G.E. — An introduction to the theory of linear spaces | 143, 263 |
Courant R., Hilbert D. — Methods of Mathematical Physics. Volume 1 | 51, 424 |
Nehari Z. — Conformal mapping | 244, 373 |
Aliprantis C. — Principles of real analysis | 299, 310 |
Kythe P.K., Puri P. — Partial differential equations and Mathematica | 88 |
Hille E. — Methods in classical and functional analysis | 69, 149 |
Hamming R.W. — Numerical Methods For Scientists And Engineers | 68, 233 |
Lukacs E. — Characterisic functions | 43, 74 |
Hartman S., Mikusinski J. — The theory of Lebesgue measure and integration | 122 |
Vladimirov V. S. — Equations of mathematical physics | 16 |
Demidovich B. (ed.) — Problems in mathematical analysis | 318, 393, 394 |
Courant R., John F. — Introduction to Calculus and Analysis. Volume 1 | 587, 594, 604 |
Meijer P.H.E. — Group Theory: The Application to Quantum Mechanics | 18 |
Fox L., Parker I.B. — Chebyshev Polynomials in Numerical Analysis | 22, 24, 43, 44 |
Kolmogorov A.N., Fomin S.V. — Measure, Lebesgue Integrals, and Hilbert Space | 110 |
Lang S. — Undergraduate analysis | 294, 295 |
Lighthill M. J. — Introduction to Fourier analysis and generalized functions | 3—7, 60—75 |
Stakgold I. — Green's functions and boundary value problems | 128, 279 |
Hewitt E., Stromberg K. — Real and abstract analysis: a modern treatment of the theory of functions of a real variable | 237, 249 |
Kestelman H. — Modern theories of integration | 229 |
Rektorys K. (ed.) — Survey of Applicable Mathematics | 698, 703, 1005 |
Kirillov A.A., Gvishiani A.D., McFaden H.H. — Theorems and Problems in Functional Analysis | 107 |
Hinrichsen D., Pritchard A. — Mathematical Systems Theory I: Modelling, State Space Analysis, Stability and Robustness | 744 |
Cloud M.J., Drachman B.C. — Inequalities: with applications to engineering | 65 |
Howes N.R — Modern Analysis and Topology | 353 |
Bear H.S. — A Primer of Lebesgue Integration | 157 |
Strang G. — Introduction to Applied Mathematics | 266 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | 398, 399, 401 |
Moore F. — Elements of Computer Music | 210 |
Zeidler E. — Applied Functional Analysis: Applications to Mathematical Physics | 195, 200 |
Wrede R.C., Spiegel M. — Theory and problems of advanced calculus | 337, 345 |
Apostol T.M. — Calculus (Volume 2): Multi-Variable Calculus and Linear Algebra with Applications | 29 |
Cohen G.L. — A Course in Modern Analysis and Its Applications | 299 |
Greiner W. — Classical mechanics. Systems of particles and hamiltonian dynamics | 126 |
Kozlov V., Mazya V., Rossmann J. — Elliptic boundary value problems in domains with point singularities | 31 |
Collatz L. — Functional analysis and numerical mathematics | 69 |
Rektorys K. — Survey of Applicable Mathematics.Volume 2. | I 673, I 678, II 336 |
Gullberg J. — Mathematics: from the birth of numbers | 910 |
Gohberg I., Goldberg S., Kaashoek M. — Classes of linear operators. (volume 2) | 562 |
Lee A. — Mathematics Applied to Continuum Mechanics | 556 |
Johnson W.C. — Mathematical and physical principles of engineering analysis | 241, 242—249 |
Courant R. — Differential and Integral Calculus, Vol. 1 | 438 |
Davis P., Hersh R. — The Mathematical Experience | 260 |
Ivanov O.A. — Easy as Pi?: An Introduction to Higher Mathematics | 60 |
Demidovich B.P., Maron I.A. — Computational Mathematics | 213 |
Hubbard B. — The World According to Wavelets: The Story of a Mathematical Technique in the Making | 9, 12—13, 17—18, 97—100, 104, 114—116, 185 |
Cheney W. — Analysis for Applied Mathematics | 72 |
Stakgold I. — Boundary value problems of mathematical physics | 125 |
Moiseiwitsch B.L. — Integral Equations | 77, 91 |
Logan J. — Applied Mathematics: A Contemporary Approach | 180, 185 |
Dennery P., Krzywicki A. — Mathematics for Physicists | 195 |
Vretblad A. — Fourier Analysis and Its Applications (Graduate Texts in Mathematics) | 75, 116 |
Barbeau E.J. — Mathematical Fallacies, Flaws and Flimflam | 138 |
Postnikov M. — Lectures in Geometry. Semester I. Analytic Geometry. | 138 |