Авторизация
Поиск по указателям
Babin A.V., Vishik M.I. — Attractors of Evolution Equations
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Attractors of Evolution Equations
Авторы: Babin A.V., Vishik M.I.
Аннотация: Problems, ideas and notions from the theory of finite-dimensional dynamical systems have penetrated deeply into the theory of infinite-dimensional systems and partial differential equations. From the standpoint of the theory of the dynamical systems, many scientists have investigated the evolutionary equations of mathematical physics. Such equations include the Navier-Stokes system, magneto-hydrodynamics equations, reaction-diffusion equations, and damped semilinear wave equations. Due to the recent efforts of many mathematicians, it has been established that the attractor of the Navier-Stokes system, which attracts (in an appropriate functional space) as t - infin; all trajectories of this system, is a compact finite-dimensional (in the sense of Hausdorff) set. Upper and lower bounds (in terms of the Reynolds number) for the dimension of the attractor were found. These results for the Navier-Stokes system have stimulated investigations of attractors of other equations of mathematical physics. For certain problems, in particular for reaction-diffusion systems and nonlinear damped wave equations, mathematicians have established the existence of the attractors and their basic properties; furthermore, they proved that, as t - +infin;, an infinite-dimensional dynamics described by these equations and systems uniformly approaches a finite-dimensional dynamics on the attractor U, which, in the case being considered, is the union of smooth manifolds. This book is devoted to these and several other topics related to the behaviour as t - infin; of solutions for evolutionary equations.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1992
Количество страниц: 532
Добавлена в каталог: 13.02.2010
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
15
251 282 436
-limit set 160
u 13
14
157
157
31
31
160
163
343
162
186
-limit set 124
201 202 221
and 202
(type of set) 301
281
220
158
217
217
157
147
319 322
201
480
13
233 242
230 242
318
*-weakly convergent sequence 20
Absorbing set 32
Absorbing set, uniformly 400
Almost stable semigroup 201
Asymptotics, of 322
Asymptotics, of spectral 251 258 259 260 392
Asymptotics, of stabilized 434 see
Asymptotics, of uniform 279 281 375 382 391
Attracting set 118
Attracting set, uniformly 424
Attraction 117
Attraction, exponential 4 05
Attractor 21 119
Attractor, point-attracting 163
Attractor, regular 270
Bair's Theorem 301
Boussinesg equation 502
c.l.t. 436 452 453 457 460 470 474
Class 223
Class 223 233
Class 241
Class 241
Class 241
Class 241
Class 223 233
Closure 21
Combined limit trajectory 436 see
Compact set 21
Continuous operator 33
Continuous operator, uniformly 33
Courant's Minimax, Principle 3 20
Critical point of a curve 335
Critical value 301
Damped hyperbolic equation 103 131 165 171 214 259 262 378 416 460 500
Damped hyperbolic system 148 170 216
Damped wave equation see “Damped hyperbolic equation”
Derivative in the sense of distributions 19
Differential inequalities 23
Dimension (Hausdorff) 479
Dirichlet boundary condition 64
Dissipation integral 172 180
Dist 137
Distance 137
Distance, symmetric 137
Ellipticity condition 90
Embedding 17
Equilibrium point 160
F.-d.c.t. 282
Finite-dimensional, combined trajectory 28 2
Fourier coefficients 15
Frechet differentiable operators 341
Frechet differential 341
Fredholm operator, differentiable 301 313
Fredholm operator, linear 300
Gagliardo — Nirenberg inequality 18
Galerkin system 39
Gel'fand theorem 204
Green function 3 20
Gronwall inequality 23
Group 29 148
Hartman — Grobman theorem 261
Hausdorff dimension 479
Hausdorff measure 479
Hoelder condition 222
Hoelder continuous function 14
Hoelder's inequality 23
Hyperbolic equation see “Damped hyperbolic equation”
Hyperbolic point 240 245
Implicit function theorem 346
Index, of a Fredgolm operator 300
Index, of a linear semigroup 205
Index, of instability 318 337
Inflection, point of 337
Inhomogenious variation equation 345
Injectivity 148
Instability index 337
Interpolation inequality 18
Invariance, inverse 118
Invariance, strict 119
Invariant, manifold, analytic 245
Invariant, manifold, of class 223
Invariant, set 159
Invariant, trajectory 157
Linearization, 262
Linearization, analytical 266 268
Linearization, continuous 261
Linearization, global 262 268
Linearization, smooth 265
Liouville formula 486
Local unstable set 217
Locally invariant set 241
Lyapunov function 159
Lyapunov stability modulo attractor 120
Magnetohydrodynamics equations 503
Manifold, 223 241 249
Manifold, 249
Manifold, 233 241
Manifold, local invariant 249
Manifold, of class 223
Massive 301
Maximal attractor 119
Minimax principle 320
Monotone parabolic equation 34 47 127 181 189 410
Monotonicity condition 179 182
Monotonicity condition, strong 179
Morse — Smale system 295
Navier — Stokes system, three-dimensional 392
Navier — Stokes system, two-dimensional 76 129 189 260 330 383 412 413 414 492
Neighbourhood, 241
Neighbourhood, 241
Neighbourhood, 241
Neighbourhood, 117
Neighbourhood, of a set 117
Neumann boundary condition 64
Nonlinear theory of shells, system 170 176
Norm, 14
Norm, 14
Norm, 14
Norm, 15
Norm, 15
Norm, 15
Norm, 15
Norm, 15
Norm, in: 14
Norm, in: 15
Norm, in: 222
Norm, in: 15
Norm, in: 15
Operators 222
Orbit 157
Passing neighbourhoods, in order reverse to the numeration 435
Poincare theorem 266
Precompact 21
Pressing exponential 218
Proper mapping 298
Quasidifferentiable, mapping 479
Quasidifferentiable, mapping, uniformly 479
Quasidifferential 480
Quasilinear operators 299 309
Quasilinear parabolic, equations 90 130 153 163 386 452 498
Reaction-diffusion system 63 168 208 258 368 456 487 498
Reaction-diffusion system, steady-state solutions 327
Regular value 301
Resonances 266
Rest-untending points 186
Riesz projections 326
Sard — Smale theorem 302
Scalar product in 15
Semigroup 29
Semigroup identity 29
Semigroup, bounded 31
Semigroup, bounded, for 31
Semigroup, bounded, for 31
Semigroup, bounded, uniformly for finite t 32
Semigroup, bounded, uniformly in t 31
Semigroup, close to linear 248 354
Semigroup, continuous 3 3
Semigroup, continuous, uniformly 33
Semigroup, linear 194 201 205 206 209
Semilinear operators 299
Semiorbit 157
Semitrajectory 157
Semitrajectory, negative 147
Shmuljan — Eberlane theorem 21
Singularly perturbed equations 416 465 474
Sobolev's embedding theorems 17
Sobolev's space, 16
Sobolev's space, (integer 1) 15
Sobolev's space, 15
Spaces, 14
Spaces, 14
Spaces, 16
Spaces, 16
Spaces, 14
Spaces, 15
Spaces, 19
Spaces, 14
Spaces, 19
Spaces, 22
Spaces, 16
Spaces, 15
Spaces, 16
Spaces, 22
Spaces, 15
Spaces, 14 15
Spaces, 19
Spaces, 19
Spaces, 16
Spaces, 15
Spaces, 15
Spaces, L 342
Spaces, L' 343
Stability 120
Stability, Lyapunov modulo attractor 120
Stable set 158
Steady-state solutions 297
Stretch exponential 219
Subspace, corresponding to 202
Subspace, invariant 203
Subspace, stable 204
Subspace, unstable 204
Tikhonov's lemma 154
Time of arrival 283
Torus 13
Trace 480
Trajectory, bounded 157
Trajectory, invariant 157
Turning point 336
Uniformly absorbing set 400
Uniformly continuous semigroup 33
Uniformly differentiable operator 341
Uniformly quasidifferentiable mapping 479
Unstable set 157 217
Upper semicontinuous dependence 402
Value, critical 301
Value, regular 301
Variation equation inhomogenious 345
Viscoelasticity, equation 169
Viscoelasticity, linearized equation 2
Weak topology 21
Weakly continuous trajectory 21
weakly convergent sequence 20
Young's inequality 22
[L.S.U.] 91
Реклама