| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
| Wolf E.L. — Nanophysics and nanotechnology. An introduction to modern concepts in nanoscience | |
| Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 130.A |
| Morse P., Feshbach H. — Methods of Theoretical Physics (part 1) | 210 (see also “Electromagnetic field”) |
| Morse P., Feshbach H. — Methods of Theoretical Physics (part 2) | 210 (see also “Electromagnetic field”) |
| Guillemin V., Sternberg S. — Geometric Asymptotics | 103 |
| Borisenko A.I., Tarapov I.E. — Vector and Tensor Analysis with Applications | 19, 110, 226 |
| Ward R.S., Wells R.O. — Twistor geometry and field theory | 244, 279, 422 |
| Jensen F. — Introduction to Computational Chemistry | 247 |
| Mukamel S. — Principles of Nonlinear Optical Spectroscopy | 113, 114, 324 |
| Maugin G.A. — Material inhomogeneities in elasticity | 83 |
| Poprawe R. (ed.), Loosen P., Bachmann F. — High Power Diode Lasers: Technology and Applications | 183 |
| Hand L.N., Finch J.D. — Analytical Mechanics | 493, 508—510, 522 |
| Efetov K. — Supersymmetry in disorder and chaos | 120 |
| Lynch S. — Dynamical Systems with Applications Using Mathematica® | 313, 318, 366 |
| Tarantello G. — Self-Dual Gauge Field Vortices: An Analytical Approach | 3 |
| Mayer J.E., Mayer M.G. — Statistical Mechanics | 327ff |
| Thaller B. — Visual quantum mechanics | 95 |
| Wyld H.W. — Mathematical Methods for Physics | 15ff. |
| Naber G.L. — Topology, Geometry and Gauge Fields | 60, 61 |
| Gudder S.P. — Stochastic methods in quantum mechanics | 5 |
| Schey H.M. — DIV, Grad, Curl, and All That: An Informal Text on Vector Calculus | 7, 8 |
| Walecka J.D. — Fundamentals of statistical mechanics | 139f |
| Feynman R.P., Leighton R.B., Sands M. — The Feynman lectures on physics (vol.1) | 2—4, 12—7 f |
| Planck M. — Introduction to Theoretical Physics | 210—214 |
| Brigman P.W. — The Logic of Modern Physics | 56, 133 |
| Griffits D.J. — Introduction to quantum mechanics | 254, 301, 307 |
| Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 246 |
| Domb C., Lebowitz J.L. — Phase Transitions and Critical Phenomena (Vol. 19) | 104, 167, 217 |
| Ito K. — Encyclopedic Dictionary of Mathematics | 130.A |
| Planck M. — Theory of electricity and magnetism,: Being volume III of Introduction to theoretical physics | 7 |
| Menzel D.H. — Mathematical Physics | 237 |
| Mukamel S. — Principles of nonlinear spectroscopy | 113, 114, 324 |
| Konopinski E.J. — Electromagnetic fields and relativistic particles | 8, 12, 106 |
| Jahne B. — Digital Image Processing | 147 |
| Klinzing G.E. — Gas-Solid Transport | 126—127 |
| Bleecker D. — Gauge Theory and Variational Principles | 16, 145 |
| Thirring W.E. — Classical Mathematical Physics: Dynamical Systems and Field Theories | 214 |
| Sakai K. (ed.) — Terahertz Optoelectronics | 99, 100, 108, 271, 278, 286, 290—292, 297, 299, 307, 321 |
| Thirring W.E. — Course in Mathematical Physics: Classical Dynamical System, Vol. 1 by Walter E. Thirring | 186 |
| Bube R.H. — Electronic Properties of Crystalline Solids: An Introduction to Fundamentals | 16, 225 |
| Young M. — Optics and Lasers: Including Fibers and Optical Waveguides | 5.2 |
| Nahin P.J. — The Science of Radio | 7, 9—10, 14 (problem), 15, 17—20, 24, 45, 217 |
| Shapira Y. — Solving PDEs in C++: numerical methods in a unified object-oriented approach | 434 |
| Feynman R.P., Leighton R.B., Sands M. — The Feynman lectures on physics (vol.2) | I-2-4, I-12-7 f, II-1-2, II-1-3, II-6-1 ff, II-7-1 ff |
| Dubrovin B.A., Fomenko A.T., Novikov S.P. — Modern Geometry - Methods and Applications. Part 1. The Geometry of Surfaces, Transformation Groups and Fields | 197, 389 |
| Nayfeh M.H., Brussel M.K. — Electricity and Magnetism | 31 |
| Kleppner D., Kolenkow R. — An introduction to mechanics | 87 |
| Mishchenko M.I. — Scattering, Absorption, and Emission of Light by Small Particles | 9 |
| Pollock D.H. (ed.) — The infrared & electro-optical systems handbook. Countermeasure systems | 343 |
| Guillemin V. — Geometric Asymptotics (Mathematical Surveys and Monographs Number 14) | 103 |
| Englert B.G. (Ed) — Quantum Mechanics | 46, 437 |
| Walker J. — The flying circus of physics: with answers | 5.47, 6.4, 6.9, 6.14, 6.15, 6.32—6.34, 6.36—6.40, 6.43, 6.45, 6.50 |
| Collins P.D., Squires E.J., Martin A.D. — Particle Physics and Cosmology | 33 |
| Balian R. — From Microphysics to Macrophysics: Methods and Applications of Statistical Physics (vol. 1) | 170, 285—292 |
| Wolf E.L. — Nanophysics and nanotechnology: an introduction to modern concepts in nanoscience | 21 |
| Sernelius B.E. — Surface Modes in Physics | 18 |
| Collins P.D.B., Martin A.D., Squires E.J. — Particle Physics and Cosmology | 33 |
| Gray C.G., Gubbins K.E. — Theory of molecular fluids | 46, 51 |
| Economou E.N. — Green's Functions in Quantum Physics | 8, 173, 364 |
| D'Inverno R. — Introducing Einstein's Relatvity | 158 |
| Fogiel M. — The optics problem solver | 3—11, 3—12, 9-12, 11—11, 13—3, 14—9, 14-10 |
| Scully M.O., Zubairy M.S. — Quantum optics | 5, 147 |
| Basdevant J.-L., Dalibard J. — Quantum Mechanics | 124 |
| Grosche C., Steiner F. — Handbook of Feynman path integrals | 177 |
| McQuistan R.B. — Scalar and Vector Fields: a Physical Interpretation | 102, 222, 239 |
| Accardi L., Lu Y.G., Volovich I. — Quantum Theory and Its Stochastic Limit | 117 |
| Martin J Buerger — Crystal Structure Analysis | 26 |
| Attard P. — Therodynamics and Statistical Mechanics: Equilibrium by Entropy Maximisation | 411 |
| Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity | 7, 104 |
| Ohanian H.C. — Classical Electrodynamics | 44, 232, 236 |
| Bird G.A. — Molecular gas dynamics and the direct simulation of gas flows | 204 |
| Novikov S.P., Fomenko A.T. — Basic elements of differential geometry and topology | 195 |
| Wigner E.P. — Group Theory and Its Applicaion to the Quantum Mechanics of Atomic Spectra | see Stark effect, Eigenvalues, etc. |
| Porter M.C. — Handbook of Industrial Membrane Technology | 192—195 |
| Barnett S.M., Radmore P.M. — Methods in Theoretical Quantum Optics | 13, 15 |
| Shu F.H. — The Physical Universe: An Introduction to Astronomy | 16, 39 |
| Mayer J.E., Goeppert Mayer M. — Statistical mechanics | 327ff |
| Steen W.M. — Laser material Processing | 43, 48 |
| Davis H. F., Snider A. D. — Introduction to Vector Analysis | 86 |
| Roepstorf G. — Path integral approach to quantum physics | 48, 161—169 |
| Büchner J., Dum C., Scholer M. — Space Plasma Simulation | 29 |
| Morse P.M. — Methods of theoretical physics | 210 (see also Electromagnetic field) |
| Crowell B. — Electricity and Magnetism | 114 |
| Szabo R.J. — An Introduction to String Theory and D-Brane Dynamics | 96 |
| Gould H., Tobochnik J., Christian W. — An introduction to computer simulation methods | 366—370 |
| Weinreich G. — Geometrical vectors | 6—9, 11, 16, 24, 65 |
| Banyai L., Koch S.W. — Semiconductor quantum dots | 194, 200 |
| Anderssen R.S., de Hoog F.R., Lukas M.A. — The application and numerical solution of integral equations | 86 |
| Slater J.C., Frank N.H. — Electromagnetism | 1—52, 206 |
| Matt Young — Optics and Lasers: Including Fibers and Optical Waveguides | 5.2 |
| Naber G.L. — Topology, Geometry and Gauge Fields | 60, 61 |
| Griffits D.J. — Introductions to electrodynamics | 58, 61 |
| Morkoc H. — Advanced semiconductor and organic nano-techniques | 322 |
| Lichnerowicz A. — Relativistic hydrodynamics and magnetohydrodynamics: Lectures on the existence of solutions | 84 |
| Schutz B.F. — A first course in general relativity | 116 |
| Zeidler E. — Applied Functional Analysis: Applications to Mathematical Physics | 180 |
| Anderson J.L. — Principles of Relativity Physics | 228, 257 |
| Barut A.O. — Electrodynamics and Classical Theory of Fields and Particles | 88 |
| Hassani S. — Mathematical Methods: for Students of Physics and Related Fields | 104 |
| Haus H.A. — Waves and Fields in Optoelectronics | 5 |
| Wermer J. — Potential Theory | 1 |
| Lyons L. — All You Wanted to Know about Mathematics but Were Afraid to Ask - Mathematics for Science Students. Volume 1 | 48—49, 139 |
| Slater J., Frank N. — Introduction to Theoretical Physics | 210—214 |
| Kirk J., Melrose D., Priest E. — Plasma astrophysics | 16, 57, 205, 226 |
| Cercignani C. — Rarefied Gas Dynamics | 171 |
| Feynman R., Leighton R., Sands M. — Lectures on Physics 2 | I-2-4, I-12-7 f, II-1-2, II-1-3, II-6-1 ff, II-7-1 ff |
| Davies P. — The New Physics | 228—230, 232—233 |
| Mackey G. — Unitary Group Representations in Physics, Probability and Number Theory | 250 |
| Collins P.D.B., Martin A.D., Squires E.J. — Particle Physics and Cosmology | 33 |
| Blin-Stoyle R.J. — Eureka! Physics of particles, matter and the universe | 13, 50 |
| Thirring W., Harrell E.M. — Classical mathematical physics. Dynamical systems and field theory | 214 |
| Melissinos A.C. — Principles of modern technology | 117 |
| Halpern A., Erlbach E. — Beginning Physics II: Waves, Electromagnetism, Optics and Modern Physics | 70, 71 |
| Kittel C., Knight W., Ruderman M. — Berkeley physics course 1. Mechanics | 69—70, 72—76, 376—380 |
| Ferziger J.H., Kaper H.G. — Mathematical theory of transport processes in gases | see "Diffusion driving force" |