Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 188, 323, 325, 376, 390, 397 |
Taylor M.E. — Partial Differential Equations. Qualitative studies of linear equations (vol. 2) | 38, 314, 402 |
Nevanlinna R., Paatero V. — Introduction to Complex Analysis | 204—206, 211 |
Abell M., Braselton J. — Differential Equations with Mathematica | 563 |
Grubb G. — Functional Calculus of Pseudo-Differential Boundary Problems | (1.6.56), (1.6.66), 1.7.2, 4.4.1, 4.7 |
Andrews G., Askey R., Roy R. — Special Functions | 463 |
Henrici P. — Applied and Computational Complex Analysis. I: Power Series, Integration, Conformal Mapping, Location of Zeros. | 337, 342, 343, 350, 373 |
Fritz J. — Lectures on advanced numerical analysis | 163 |
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 1) Functional analysis | 204—206 |
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 120 293.F 323.C |
Berger M. — A Panoramic View of Riemannian Geometry | 85 |
Oksendal B. — Stochastic differential equations : an introduction with applications | 2, 167 |
Borisenko A.I., Tarapov I.E. — Vector and Tensor Analysis with Applications | 222 |
Ames W.F. — Numerical methods for Partial Differential Equations | 94 |
Meyer C.D. — Matrix analysis and applied linear algebra | 563 |
Henrici P. — Applied and Computational Complex Analysis (Vol. 2) | 342 |
Henrici P. — Applied and Computational Complex Analysis (Vol. 3) | 39, 223, 224, 225, 227, 228, 229, 243, 246, 247, 248, 258, 266, 270, 279, 285, 370, 371, 373, 374, 375, 377, 378, 451, 452, 457, 461, 470, 471 |
Bergman S. — The Kernel Function and Conformal Mapping | 52, 112 |
Koosis P. — The Logarithmic Integral (Vol. 1) | 251, 360, 387, 388 |
Axler S., Bourdon p., Ramey W. — Harmonic function theory | 12, 223 |
Conway J.B. — Functions of One Complex Variable | 252, 269 |
Stein E.M. — Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscilattory Integrals | 24, 223—225, 590, 629 |
Pommerenke C. — Univalent functions (Studia mathematica) | 285 |
Showalter R.E. — Monotone Operators in Banach Space and Nonlinear Partial Differential Equations | 1, 19, 59, 62, 93 |
Hormander L. — Notions of Convexity | 118, 172 |
Nayfeh A.H. — Perturbation Methods | 38 |
Kundu P.K., Cohen I.R. — Fluid mechanics | 176 |
Ladyzhenskaya O.A. — Mathematical theory of viscous incompressible flow | 42 |
Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 274 |
Douglas R.G. — Banach algebra techniques in operator theory | 171 |
Winkler G. — Stochastic Integrals | 9.3.3 |
Curtain R.F., Pritchard A.J. — Functional Analysis in Modern Applied Mathematics | 161, 185 |
Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications | 310 |
Skorokhod A.V., Prokhorov Y.V. (Ed) — Basic Principles and Applications of Probability Theory | 173 |
Edwards H. — Advanced Calculus: A Differential Forms Approach | 288 |
Debnath L. — Nonlinear Partial Differential Equations for Scientists and Engineers | 5, 29, 36, 45, 102 |
Gorenflo R., Vessella S. — Abel Integral Equations: Analysis and Applications | 141 |
Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 427, 428 |
Kohonen T. — Self-organizing maps | 175 |
Debnath L. — Linear Partial Differential Equations for Scientists and Engineers | 330, 416 |
Hasumi M. — Hardy Classes on Infinitely Connected Riemann Surfaces | I.5A, III.3A, VI.1B |
Gallot S., Hulin D. — Riemannian Geometry | IV.D., 4.68. |
Tarkhanov N.N. — Cauchy Problem for Solutions of Elliptic Equations | 302, 403 |
Krantz S.G. — Function Theory of Several Complex Variables | 43 |
Ablowitz M.J., Fokas A.S. — Complex Variables: Introduction and Applications | 40, 326, 546 |
Petersen P. — Riemannian Geometry | 304 |
Chung K.L., Walsh J.B. — Markov Processes, Brownian Motion, and Time Symmetry | 166, 286, 287, 411 |
Agarwal R.P., O'Regan D. — Fixed Point Theory and Applications | 22 |
Oksendal B. — Stochastic Differential Equations: An Introduction With Applications | 2, 177, 179 |
Krantz S.K. — Partial Differential Equations and Complex Analysis | 2, 23 |
Goldberg M.A. (ed.) — Solution Methods for Integral Equations | 205—207, 218 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1 | 685, 703—705 |
Agoshkov V.I., Dubovsky P.B. — Methods for Solving Mathematical Physics Problems | 38, 71 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 535 |
Shiryaev A., Peskir G. — Optimal Stopping and Free-Boundary Problems | 84, 130 |
Alfsen E.M. — Compact Convex Sets and Boundary Integrals | 105 |
Lukes J., Maly J., Zajicek L. — Fine Topology Methods in Real Analysis and Potential Theory | 2, 327, 355, 356, 430 |
Reed M., Simon B. — Methods of Functional Analysis (in 4 volumes). Volume 1: Functional Analysis | 204- 206 |
Chabrowski J. — Dirichlet Problem with L2-Boundary Data for Elliptic Linear Equations | 9, 42, 63, 90 |
Bamberg P.G. — A Course in Mathematics for Students of Physics, Vol. 2 | 476, 591, 604 |
Delves L.M. (ed.), Walsh J. (ed.) — Numerical Solution of Integral Equations | 259, 267—269, 271, 276, 282 |
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 4) Analysis of operators | $204^1$ |
Meyer Y., Coifman R. — Wavelets. Calderon-Zygmund and multilinear operators | 258 |
Glasko V. — Inverse Problems of Mathematical Physics | 57 |
Lifanov I.K., Poltavskii L.N., Vainikko G.M. — Hypersingular integral equations and their applications | 205 |
Rall D. — Computational Solution to Nonlinear Operator Equations | 181 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 3 | 685, 703—705 |
Lin C.C., Segel L.A. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 573 |
Ito K. — Encyclopedic Dictionary of Mathematics | 120, 293.F, 323.C |
Kannan D. (ed.), Lakshmikantham V. (ed.) — Handbook of stochastic analysis and applications | 34 |
Chipot M., Quittner P. — Stationary Partial Differential Equations, Vol. 1 | 506, 508, 513 |
Rudin W. — Real and complex analysis | 235 |
Korner T.W. — Fourier Analysis | see also “Laplace's equation” |
Greenberg M.D. — Advanced engineering mathematics | 1059 |
Stakgold I. — Green's Functions and Boundary Value Problems | 501—507, 513—517 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 2 | 685, 703—705 |
Aubin T. — Nonlinear Analysis on Manifolds: Monge-Ampere Equations | 157, 158, 182 |
Nikiforov A.F., Uvarov V. — Special Functions of Mathematical Physics: A Unified Introduction with Applications | 89 |
Goldber M.A. (ed.) — Numerical Solution of Integral Equations | 4, 8, 19, 28 |
Strichartz R.S. — The way of analysis | 561 |
Havin V.P., Nikolski N.K. (eds.) — Linear and Complex Analysis Problem Book 3 (part 2) | 10.20, 12.20, 12.30, 15.7 |
Bao G., Cowsar L., Masters W. — Mathematical Modeling in Optical Science | 238 |
Demidov A.S. — Generalized Functions in Mathematical Physics: Main Ideas and Concepts | 11 |
Bartsch T. — Topological Methods for Variational Problems with Symmetries | 27f |
Port S.C., Stone C.J. — Brownian motion and classical potential theory | 88 |
Hoermander L. — The Analysis of Linear Partial Differential Operators II: Differntial Operators with Constant Coefficients | 306 |
Tricomi F.G. — Integral equations | 77 |
Bak J., Newman D.J. — Complex Analysis | 205 |
Granas A., Dugundji J. — Fixed Point Theory | 181 |
Hörmander L. — The Analysis Of Linear Partial Differential Operators III | 24 |
Abhyankar S.S. — Local Analytic Geometry | 62 |
Hanna J.R., Rowland J.H. — Fourier Series, Transforms, and Boundary Value Problems | 247—248 |
Asmar N.H. — Partial Differential Equations with fourier series and boundary value problems | 164, 216 |
Stratton J.A. — Electromagnetic Theory | 461 |
Kincaid D., Cheney W. — Numerical analysis: mathematics of scientific computing | 586, 592 |
Evans G.A., Blackledge J.M., Yardley P. — Analytic Methods for Partial Differential Equations | 79 |
Egorov Yu.V. (Ed), Shubin M.A. (Ed) — Partial Differential Equations II: Elements of the Modern Theory. Equations with Constant Coefficients | 224 |
Stakgold I. — Boundary Value Problems of Mathematical Physics | 90—103, 122—25, 135, 142, 172, 296, 348 |
Wheeden R.L., Zygmund A. — Measure and integral. An introduction to real analysis | 152 |
Egorov Y.V. (Ed), Shubin M.A. (Ed) — Partial Differential Equations II: Elements of the Modern Theory. Equations with Constant Coefficients | 224 |
Harmand P., Werner D., Werner W. — M-Ideals in Banach Spaces and Banach Algebras | 98 |
Anderson G.A., Granas A. — Fixed Point Theory | 181 |
Kitahara M. — Boundary Integral Equation Methods in Eigenvalue Problems of Elastodynamics and Thin Plates | 53, 113 |
Kral J. — Integral Operators in Potential Theory (Lecture Notes in Mathematics) | 3, 61, 146 |
Sutton R.S., Barto A.G. — Reinforcement Learning | 131 |
Tsang L., Kong J.A., Ding K.- H. — Scattering of electromagnetic waves (Vol 1. Theories and applications) | 390, 391, 397, 408, 415 |
Stakgold I. — Boundary value problems of mathematical physics | 90—103, 122—125, 135, 142, 172, 296, 348 |
Tannehill J.C., Pletcher R.H., Anderson D.A. — Computational Fluid Mechanics and Heat Transfer | 34 |
Carl D. Meyer — Matrix Analysis and Applied Linear Algebra Book and Solutions Manual | 563 |
Simmons G.F. — Differential Equations with Applications and Historical Notes | 254 |
Bridges D.S. — Foundations Of Real And Abstract Analysis | 257 |
Prilepko A.I., Orlovsky D.G., Vasin I.A. — Methods for Solving Inverse Problems in Mathematical Physics | 7, 367 |
Kaplan W. — Introduction to analytic functions | 135—145 |
Saul'yev V.K. — Integration of Equations of Parabolic Type By the Method of Nets | 85n, 219, 228, 242 |
Ortega J. M. — Iterative Solution of Nonlinear Equations in Several Variables | 14 |
Sneddon I.N. — Mixed boundary value problems in potential theory | 1 |
Cordes H. — Elliptic Pseudo-Differential Operators - An Abstract Theory | 181, 196 |
Shilov G.E. — An introduction to the theory of linear spaces | 300 |
Mikhlin S.G., Prossdorf S. — Singular Integral Operators | 185 |
Abell M.L., Braselton J.P. — Differential equations with Mathematica | 563 |
Nehari Z. — Conformal mapping | 14, 354 |
Duistermaat J.J, Kolk J.A.C. — Distributions: theory and applications | 119 |
Mandel L., Wolf E. — Optical Coherence and Quantum Optics | 125 |
Rauch J. — Partial differential equations | 118, Ch. 5 |
Stratton J.A. — Electromagnetic Theory | 461 |
Hormander L. — The Analysis of Linear Partial Differential Operators IV | 24 |
Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 92, 502 |
Dynkin E.B., Yushkevich A.A. — Markov processes; theorems and problems | 33, 48, 60, 114 |
Zygmund A. — Trigonometric Series. Volume 2 | 97 |
Hildebrand F.B. — Methods of Applied Mathematics | 139, 177, 303(27), 309(36) |
Schulz F., Dold A. (Ed), Eckmann B. (Ed) — Regularity Theory for Quasilinear Elliptic Systems and Monge-Ampere Equations in Two Dimensions | 18 |
Douglas R.G. — Banach algebra techniques in operator theory | 171 |
Varga R.S. — Matrix iterative analysis | 2, 202 |
Fox L., Parker I.B. — Chebyshev Polynomials in Numerical Analysis | 171 |
Taylor M.E. — Partial Differential Equations. Nonlinear Equations (vol. 3) | 91, 110, 168, 180, 288 |
Adams D.R., Hedberg L.I. — Function spaces and potential theory | V, VIII, 164, 165, 181—183 |
Krantz S.G. — Function theory of several complex variables | 43 |
Carroll R.W. — Mathematical physics | 5, 15, 66, 270 |
Bhatia R. — Fourier Series (Mathematical Association of America Textbooks) | 15 |
Stakgold I. — Green's functions and boundary value problems | 501—507, 513—517 |
Jorsboe O.G., Mejlbro L. — The Carleson-Hunt Theorem on Fourier Series | 25 |
Anderssen R.S., de Hoog F.R., Lukas M.A. — The application and numerical solution of integral equations | 121 |
Rubinstein I. — Electro-diffusion of ions | 27 |
Schaaf R. — Global Solution Branches of Two Point Boundary Value Problems | 1 |
Bear H.S. — A Primer of Lebesgue Integration | 81 |
Kanwal R.P. — Linear Integral Equations: Theory and Techniques | 98—100, 107, 117, 129 |
Braun M. — Differential Equations and Their Applications: An Introduction to Applied Mathematics | 481 |
Hildebrand F.B. — Advanced Calculus for Applications | 430 |
Chung K.L., Walsh J.B — Markov Processes, Brownian Motion, and Time Symmetry | 166, 286, 287, 411 |
Zeidler E. — Applied Functional Analysis: Applications to Mathematical Physics | 125 |
Daepp U., Gorkin P. — Reading, writing and proving. Close look at mathematics | 199 |
Golberg M.A. — Numerical Solution of Integral Equations | 4, 8, 19, 28 |
Acton F.S. — Numerical Methods That Work | 477, 488 |
Kozlov V., Mazya V., Rossmann J. — Elliptic boundary value problems in domains with point singularities | 65, 118 |
Hu S., Papageorgiou N.S. — Handbook of Multivalued Analysis, Volume II: Applications | 242 |
John F. — Partial Differential Equations | 95, 103, 106, 111—125, 155, 190—205 |
Dynkin E. — An Introduction to Branching Measure-Valued Processes | 1 |
Wermer J. — Potential Theory | 89 |
Heinonen J. — Lectures on Analysis on Metric Spaces | 108 |
Rempel S., Schulze B.-W. — Index Theory of Elliptic Boundary Problems | 197, 217 |
Kanwal R.P. — Generalized functions: Theory and technique | 311 |
Friedman A., Littman W. — Industrial Mathematics: A Course in Solving Real-World Problems | 128, 129 |
Blanchard P., Bruening E. — Mathematical Methods in Physics: Distributions, Hilbert Space Operators, and Variational Method | 375, 417 |
Cheney W. — Analysis for Applied Mathematics | 167, 198 |
Young D.M., Gregory R.T. — A Survey of Numerical Mathematics, Volume 2 | 952 |
Tannehill J.C., Anderson D.A., Pletcher R.H. — Computational Fluid Mechanics and Heat Transfer | 34 |
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 92, 502 |
Buckmaster J. — The Mathematics of combustion | 61 |
Lin C., Segel L. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 573 |
Lin C., Segel L. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 573 |
Logan J. — Applied Mathematics: A Contemporary Approach | 174, 518 |
Lin C., Segel L. — Mathematics applied to deterministic problems in the natural sciences | 573 |
Kline M. — Mathematical thought from ancient to modern times | 685, 703—705 |
Nievergelt J., Farrar J.C., Reingold E.M. — Computer approaches to mathematical problems | 159—160 |
Alt F.L., Rubinoff M. — Advances in computers.Volume 3 | 231—250 |
Vretblad A. — Fourier Analysis and Its Applications (Graduate Texts in Mathematics) | 145, 148 |