Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Kedlaya K.S., Poonen B., Vakil R. — The William Lowell Putnam Mathematical Competition 1985–2000: Problems, Solutions, and Commentary | 39, 47, 50, 110, 132, 234, 235, 270, 273, 281, 282 |
Abramowitz M., Stegun I. (eds.) — Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Table | 12 |
Apostol T.M. — Calculus (vol 1) | 217-220 |
Spiegel M.R. — Mathematical Handbook of Formulas and Tables | 57 |
Keisler H.J. — Elementary calculus | 391, 394 |
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 216.C |
Graham R.L., Knuth D.E., Patashnik O. — Concrete mathematics | 54, 458 |
Acheson David — From calculus to chaos | 12 |
Bulirsch R., Stoer J. — Introduction to numerical analysis | 88, 89, 136, 138 |
Apostol T.M. — Mathematical Analysis | 144, 278 |
Heyde C.C. — Quasi-likelihood and its application: a general approach to optimal parameter estimation | 190 |
Olver P.J. — Equivalence, Invariants and Symmetry | 224, 243 |
Zienkiewicz O.C., Taylor L.R. — The finite element method (vol. 1, The basis) | 43, 143, 278, 351, 389, 549, 643 |
Shampine L.F., Allen R.C., Pruess Jr.S. — Fundamentals of numerical computing | 253 |
Bender C., Orszag S. — Advanced Mathematical Methods for Scientists and Engineers | 252—261 |
Rudin W. — Real and Complex Analysis | 176, 226, 239 |
Farkas H., Kra I. — Riemann Surfaces | 26 |
Dingle R. — Asymptotic Expansions: Their Derivation and Interpretation | 21, 112, 404 |
Hinch E.J. — Perturbation Methods | 29 |
Lee J.M. — Riemannian Manifolds: an Introduction to Curvature | 43, 88 |
Graves L.M. — Theory of Functions of Real Variables | 94, 220, 265 |
Lee J.M. — Introduction to Smooth Manifolds | 267 |
Weinstock R. — Calculus of variations with applications to physics & engineering | 5 |
Bird J. — Engineering Mathematics | 434 |
Winkler G. — Stochastic Integrals | 7.3.1f |
Edwards H. — Advanced Calculus: A Differential Forms Approach | 222 |
Kay S.M. — Intuitive Probability and Random Processes using MATLAB | 368, 787 |
Braselton J.P. — Maple by Example | 144 |
Bogachev V.I. — Measure Theory Vol.1 | 343 |
Halmos P.R. — Measure Theory | 269 |
Estep D.J. — Practical Analysis in One Variable | 309 |
Roman S. — The Umbral Calculus | 118 |
Kurtz D.S., Swartz C.W. — Theories of Integration | 37, 149 |
Kac V. — Vertex Algebra for Beginners | 15 |
Sagan H. — Advanced Calculus of Real-Valued Functions of a Real Variable and Vector-Valued Functions of a Vector Variable | 186 |
Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 275 |
Coffin D. — Calculus on the HP-48G/GX | 137, 181, 185—189 |
Pfeffer W.F., Fulton W. (Ed) — Riemann Approach to Integration: Local Geometric Theory | 32, 108, 251 |
Sokolnikoff I.S. — Advanced Calculus | 284 |
Thompson J.E. — Calculus for the Practical Man | 181 |
Hunt P.J., Kennedy J. — Financial Derivatives in Theory and Practice | 81—83 |
Ablowitz M.J., Fokas A.S. — Complex Variables: Introduction and Applications | 423 |
Pugh C.C. — Real Mathematical Analysis | 178 |
Shankar R. — Basic Training In Mathematics | 42 |
Jost J., Simha R.T. — Compact Riemann Surfaces: An Introduction to Contemporary Mathematics | 93 |
Stone C.J.D. — Course in Probability and Statistics | 88 |
Fripp A., Fripp J., Fripp M. — Just-in-Time Math for Engineers | 154—156 |
Rudin W. — Functional analysis | 260 |
Lang S.A. — Undergraduate Analysis | 105 |
Purdom R.W., Brown C.A. — The analysis of algorithms | 165 |
Griffits D.J. — Introduction to quantum mechanics | 15 |
Boas R.P. — A Primer of Real Functions | 187, 227, 228, 231—233, 239—241, 275 |
Ito K. — Encyclopedic Dictionary of Mathematics | 216.C |
Taylor J.C. — An Introduction to Measure and Probability | 135 |
Burn R.P. — Numbers and Functions: Steps to Analysis | 10.57—10.59 |
Shiryaev A.N. — Probability | 206 |
Hardy G.H. — A course of pure mathematics | 230, 234, 247 et seq. |
Sokolnikoff I.S. — Higher Mathematics for Engineers and Physicists | 276 |
Rudin W. — Real and complex analysis | 157 |
Lebedev L.P., Cloud M.J. — Tensor Analysis | 86 |
Dieudonne J. — Foundation of Modern Analysis | 8.7 |
Pedregal P. — Introduction to Optimization | 155, 157 |
Dieudonne J.A. — Treatise on Analysis, Vol. 2 | 13.21, prob. 6 |
Apostol T.M. — Calculus: One-Variable Calculus with an Introduction to Linear Algebra, Vol. 1 | 217—220 |
Bachman G., Beckenstein E. — Fourier And Wavelet Analysis | 168 |
Zeldovich Ya.B., Yaglom I.M. — Higher Math for Beginners | 167 |
Weir A.J. — Lebesgue Integration and Measure | 58, 103 |
von zur Gathen J., Gerhard J. — Modern computer algebra | 597, 598, 600, 637 |
Bogachev V.I. — Measure Theory Vol.2 | I: 343 |
Strichartz R.S. — The way of analysis | 210 |
Schechter M. — Spectra of partial differential operators | 54 |
Bingham N.H., Goldie C.M., Teugels J.L. — Regular variation | 33, 98, 100, 437—438 |
Portela A., Charafi A. — Finite Elements Using Maple: A Symbolic Programming Approach | 54 |
Aslrom K.J. — Introduction to Stochastic Control Theory | 61 |
Feller W. — Introduction to probability theory and its applications (Volume II) | 150—151 |
Billingsley P. — Probability and Measure | 239 |
D'Angelo J.P., West D.B. — Mathematical Thinking: Problem-Solving and Proofs | 345, 348, 352, 360 |
Spiegel M.R. — Schaum's mathematical handbook of formulas and tables | 57 |
Kuttler K. — Calculus, Applications and Theory | 184, 243 |
Rogosinski W. — Fourier Series | 163 |
Axellson O., Barker V.A. — Finite Element Solution of Boundary Value Problems. Theory and Computation | 81 |
Wheeden R.L., Zygmund A. — Measure and integral. An introduction to real analysis | 26, 118 |
Olver P.J., Shakiban C. — Applied linear. algebra | 613, 624 |
Young R.M. — Excursions in Calculus: An Interplay of the Continuous and the Discrete | 253, 305 |
Krantz S.G. — Handbook of Real Variables | 97 |
D'Inverno R. — Introducing Einstein's Relatvity | 147 |
Bonar D.D., Khoury M.J. — Real Infinite Series | 54 |
Ash R.B. — Real Variables with Basic Metric Space Topology | 111—112 |
Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142) | 282 |
Dieudonne J. — Foundation of Modern Analysis | 8.7 |
Knopp K. — Theory and applications of infinite series | 169 |
Murray D.A. — Differential and integral calculus | 298 |
Woods F.S., Bailey F.H. — Elementary Calculus | 212 |
C. Caratheodory, F. Steinhardt — Theory of Functions of a Complex Variable. 2 Volumes | 231 |
Bridges D.S. — Foundations Of Real And Abstract Analysis | 109 |
Grenander U. — Toeplitz Forms and Their Applications | 4 |
Browder A. — Mathematical Analysis: An Introduction | 112, 247 |
Berezin F.A. — Method of Second Quantization | 39, 73 |
L Sirovich — Techniques of Asymptotic Analysis With 23 Illustrations | 40, 164 |
Rogosinski W.W. — Volume and integral | 6.7 |
Adams P.W., Smith K., Výborný D. — Introduction to Mathematics with Maple | 468 |
Harman T.L., Dabney J.B., Richert N.J. — Advanced Engineering Mathematicas with MATLAB | 644 |
Kac V. — Vertex Algebras for Beginners | 15 |
Knopp K., Bagemihl F. — Infinite Sequences and Series | 130 |
Hartman S., Mikusinski J. — The theory of Lebesgue measure and integration | 103 |
Demidovich B. (ed.) — Problems in mathematical analysis | 116, 117, 149 |
Woods F.S., Bailey F.H. — A Course in Mathematics. Volume II | II, 30, 51 |
Fox H., Bolton W. — Mathematics for Engineers and Technologists | 145 |
Lang S. — Undergraduate analysis | 105 |
Rößler A. — Numerical Methods for Stochastic Differential Equations | 35 |
Hewitt E., Stromberg K. — Real and abstract analysis: a modern treatment of the theory of functions of a real variable | 287 |
Kestelman H. — Modern theories of integration | 162, 208 |
Rosenhouse J. — The Monty Hall Problem: The Remarkable Story of Math's Most Contentious Brain Teaser | 148 |
Rektorys K. (ed.) — Survey of Applicable Mathematics | 489—490, 557 |
Geddes K., Czapor S., Labahn G. — Algorithms for computer algebra | 473, 482—483 |
Barry Steven, Davis Stephen — Essential Mathematical Skills: For Students of Engineering, Science and Applied Mathematics | 57 |
Griffits D.J. — Introductions to electrodynamics | 37 |
Ponstein J. — Nonstandart Analysis | 118 |
Zeidler E. — Applied Functional Analysis: Applications to Mathematical Physics | 117, 119, 159 |
Jeffreys H. — Methods Of Mathematical Physics | 32 |
Berezin F.A., Kirillov A.A. (ed.) — Introduction to Superanalysis | 77 |
Blomberg H.( ed.) — Algebraic theory for multivariable linear systems, Volume 166 | 225 |
Zeidler E. — Oxford User's Guide to Mathematics | 140, 313, 344 |
Rektorys K. — Survey of Applicable Mathematics.Volume 2. | I 451, I 519 |
Franklin P. — Differential and integral calculus | 347 |
Glimm J., Jaffe A. — Quantum Physics: A Functional Integral Point of View | 106ff, 207ff, 255, 256ff, 423, 424 |
Courant R. — Differential and Integral Calculus, Vol. 1 | 141, 218—225 |
De Barra G — Measure theory and integration | 65, 163, 164 |
Malyshev V.A., Minlos R.A. — Gibbs Random Fields: Cluster Expansions (Mathematics and its Applications) | 41 |
Ivanov O.A. — Easy as Pi?: An Introduction to Higher Mathematics | 29 |
Canuto C., Tabacco A. — Mathematical analysis | 305, 335 |
Abramowitz M., Stegun I.A. (eds.) — Handbook of mathematical functions (without numerical tables) | 12 |
D'Angelo J.P., West D.B. — Mathematical thinking: problem-solving and proofs | 345, 348, 352, 360 |
Osborne G.A. — Differential and integral calculus, with examples and applications | 279 |
Apostol T. — Mathematical Analysis, Second Edition | 144, 278 |
Geddes K.O., Czapor S.R., Labahn G. — Algorithms for computer algebra | 473, 482—483 |