|
|
Ðåçóëüòàò ïîèñêà |
Ïîèñê êíèã, ñîäåðæàùèõ: Laplace equation
Êíèãà | Ñòðàíèöû äëÿ ïîèñêà | Andrews G., Askey R., Roy R. — Special Functions | 198 | Fritz J. — Lectures on advanced numerical analysis | 163 | Bathe K.-J. — Finite element procedures | 106, 107 | Morse P., Feshbach H. — Methods of Theoretical Physics (part 1) | 7, 1173—1330 | Morse P., Feshbach H. — Methods of Theoretical Physics (part 2) | 7, 1173—1330 | Ames W.F. — Numerical methods for Partial Differential Equations | 23, 92 | Hedenmalm H., Korenblum B., Zhu K. — Theory of Bergman spaces | 62 | Olver P.J. — Equivalence, Invariants and Symmetry | 115, 240 | Hoffman J.D. — Numerical Methods for Engineers and Scientists | 502, 512, 516, 526, 528, 530, Chapter 9 | Trottenberg U., Schuller A., Oosterlee C. — Multigrid | 160, 541 | Ferziger J.H., Peric M. — Computational Methods for Fluid Dynamics | 14 | Smith I.M., Griffiths D.V. — Programming the finite element method | 40, 239 | Swanson D.G., Hoefer W.J.R. — Microwave Circuit Modeling Using Electromagnetic Field Simulation | 56, 57, 60, 61, 239 | Wolf J.P. — The Scaled Boundary Finite Element Method | 3 | Zienkiewicz O.C., Taylor L.R. — The finite element method (vol. 1, The basis) | 140—161, 333, 337, 555 | Bochner S., Martin W.T. — Several Complex Variables | 163 | Rudin W. — Real and Complex Analysis | 223 | Hormander L. — Notions of Convexity | 116 | Smirnov V.I. — Higher mathematics. Vol.2 | 276, 329, 333, 337, 568—594 | Ward R.S., Wells R.O. — Twistor geometry and field theory | 277, 296, 428 | Lauwerier H.A. — Calculus of variations in mathematical physics | 65, 66 | Kundu P.K., Cohen I.R. — Fluid mechanics | 150 | Kaandorp J.A. — Fractal Modelling: Growth and Form in Biology | 19, 92, 142 | Ahlfors L.V. — Complex analysis | 25, 160 | Sadd M.H. — Elasticity: theory, applications, and numerics | 96, 131, 208, 248 | Herrmann H.J. (ed.), Roux S. (ed.) — Statistical models for the fracture of disordered media | 263 | Williamson R.E., Crowell R.H., Trotter H.F. — Calculus of vector functions | 388 | Pedlosky J. — Waves in the ocean and atmosphere: introduction to wave dynamics | 23, 26, 36, 42, 81 | Polya G., Szego G. — Problems and Theorems in Analysis: Integral Calculus. Theory of Functions | III 87, 120 | Bryant R., Griffiths P., Grossman D. — Exterior differential systems and Euler-Lagrange PDEs | 139 | Chaudhry M.A., Zubair S.M. — On a Class of Incomplete Gamma Functions with Applications | 442 | Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications | 298, 319, 320 | Debnath L. — Nonlinear Partial Differential Equations for Scientists and Engineers | 8, 36, 38, 45, 56, 59, 61, 65, 79, 90, 101, 387 | Debnath L. — Linear Partial Differential Equations for Scientists and Engineers | 3, 64, 330, 361 | Dacorogna B. — Direct Methods in the Calculus of Variations | 7, 228 | Strauss W.A. — Partial Differential Equations: An Introduction | 2, 16, 146 | Chung K.L., Walsh J.B. — Markov Processes, Brownian Motion, and Time Symmetry | 156 | Neittaanmaki P., Tiba D. — Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications | 47 | Alexiades V. — Mathematical Modeling of Melting and Freezing Processes | 13 | Agoshkov V.I., Dubovsky P.B. — Methods for Solving Mathematical Physics Problems | 23 | Thouless D.J. — Topological quantum numbers in nonrelativistic physics | 32 | Rudin W. — Functional analysis | 197 | Rall D. — Computational Solution to Nonlinear Operator Equations | 181 | Lin C.C., Segel L.A. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 107, 552, 567 | Chipot M., Quittner P. — Stationary Partial Differential Equations, Vol. 1 | 289 | Konopinski E.J. — Electromagnetic fields and relativistic particles | 54, 84, 480 | Schroeder M.R. — Schroeder, Self Similarity: Chaos, Fractals, Power Laws | 198 | Rudin W. — Real and complex analysis | 232 | Kuznetsov N., Mazya V., Vainberq B. — Linear Water Waves: A Mathematical Approach | 3, 24, 34, 41, 46, 47, 50, 70, 72, 88, 96, 118, 119, 167, 185, 216, 274, 281, 339, 356, 357, 362, 436, 462, 476 | Beyer H.F., Shevelko V.P. — Introduction to the Physics of Highly Charged Ions | 93 | Hiemenz P.C. (ed.), Rajagopalan R. (ed.) — Principles of colloid and surface chemistry | 251, 259 | Greenberg M.D. — Advanced engineering mathematics | 1058 | Gong S., Gong Y. — Concise Complex Analysis | 15 | Nikiforov A.F., Uvarov V. — Special Functions of Mathematical Physics: A Unified Introduction with Applications | 1, 76, 89 | Pap E. — Complex Analysis Through Examples And Exercises | 60 | Strichartz R.S. — The way of analysis | 682 | Havin V.P., Nikolski N.K. (eds.) — Linear and Complex Analysis Problem Book 3 (part 2) | 14.4 | Shapira Y. — Solving PDEs in C++: numerical methods in a unified object-oriented approach | 262 | Feynman R.P., Leighton R.B., Sands M. — The Feynman lectures on physics (vol.2) | II-6-1, II-7-1 | Tricomi F.G. — Integral equations | 77 | McCormick S.F. — Multigrid Methods (Frontiers in Applied Mathematics) | 56, 123, 163, 166 | Miller W. — Symmetry Groups and Their Applications | 242, 249 | Driscoll T.A., Trefethen L.N. — Schwarz-Christoffel Mapping | 75-99 | Olver P.J., Shakiban C. — Applied linear. algebra | 368, 370, 372, 380 | Krantz S.G. — Handbook of Real Variables | 169 | Greiner W. — Classical electrodynamics | 12, 47, 114 | Economou E.N. — Green's Functions in Quantum Physics | 11, 12, 345—347 | Kreyszig E. — Advanced engineering mathematics | 407, 465, 536, 579, 587, 910 | Mattheij R.M.M. — Partial differential equations: modeling, analysis, computation | 24, 159 | Scully M.O., Zubairy M.S. — Quantum optics | 99 | Oprea J. — Differential Geometry and Its Applications | 179, 183 | Likharev K.K. — Dynamics of Josephson junctions and circuits | 273, 279—80 | McQuistan R.B. — Scalar and Vector Fields: a Physical Interpretation | 249, 264 | Kitahara M. — Boundary Integral Equation Methods in Eigenvalue Problems of Elastodynamics and Thin Plates | 22, 136 | Kral J. — Integral Operators in Potential Theory (Lecture Notes in Mathematics) | 1 | Beutler G. — Methods of Celestial Mechanics: Volume I: Physical, Mathematical, and Numerical Principles | I 101 | Bayin S.S. — Mathematical Methods in Science and Engineering | 9 | Tsang L., Kong J.A., Ding K.- H. — Scattering of electromagnetic waves (Vol 1. Theories and applications) | 72 | Carmeli M. — Classical Fields: General Gravity and Gauge Theory | 3, 7—10, 175, 176, 210, 377 | Tsang L., Kong J.A., Ding K.- H. — Scattering of electromagnetic waves (Vol 2. Numerical simulations) | 497, 499, 521, 523 | Landau L.D., Lifshitz E.M. — The classical theory of fields | 95 | Aristotle D. Michal — Matrix and tensor calculus: with applications to mechanics, elasticity, and aeronautics | 62, 63 | Astfalk G. — Applications on Advanced Architecture Computers | 28, 30, 32, 247 | Kaplan W. — Introduction to analytic functions | (see Harmonic functions) | Saul'yev V.K. — Integration of Equations of Parabolic Type By the Method of Nets | (xv)n, 108, 109, 203, 205, 228, 291 | Novikov S.P., Fomenko A.T. — Basic elements of differential geometry and topology | 154 | Riley, Hobson — Mathematical Methods for Physics and Engineering | 612 | Ince E.L. — Integration of ordinary differential equations | 104 | Nehari Z. — Conformal mapping | 4 | Rauch J. — Partial differential equations | 12, 15, 81, 131, 157 | Magnus W., Oberhettinger F., Wermer J. — Formulas and Theorems for the Functions of Mathematical Physics | 157ff | Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 495 | Weaver H.J. — Applications of discrete and continous Fourier analysis | 310 | Abramovich Y.A., Aliprantis C.D. — An Invitation to Operator Theory | 236 | Dynkin E.B., Yushkevich A.A. — Markov processes; theorems and problems | 18, 62, 114 | Volkmer H. — Multiparameter Eigenvalue Problems And Expansion Theorems | 67 | Vladimirov V. S. — Equations of mathematical physics | 33 | Demidovich B. (ed.) — Problems in mathematical analysis | 289, 291 | Belotserkovsky S.M., Lifanov I.K. — Method of Discrete Vortices | 246,328,329,423 | van der Giessen E., Wu Theodore Y.-T., Hassan A. — Advances in Applied Mechanics. Volume 38 | 303—304 | Brebbia C.A., Domingues J. — Boundary elements. An introductory course | 17, 46 | Fluegge S. (ed.) — Encyclopedia of physics. Vol. 9. Fluid dynamics III | 294, 319, 462, 667 | Morse P.M. — Methods of theoretical physics | 7, 1173—1330 | Adams D.R., Hedberg L.I. — Function spaces and potential theory | V, 165 | Berndt J., Tricerri F., Vanhecke L. — Generalized Heisenberg Groups and Damek-Ricci Harmonic Spaces | 11 | Berndt J., Tricerri F., Vanhecke L. — Generalized Heisenberg Groups | 11 | Saito Y. — Statistical physics of crystal growth | 83, 121 | Wiedemann H. — Particle accelerator physics II | 43 | Banyai L., Koch S.W. — Semiconductor quantum dots | 24 | Lane S.M. — Mathematics, form and function | 180 | Cloud M.J., Drachman B.C. — Inequalities: with applications to engineering | 89 | Cole G.H.A., Woolfson M.M. — Planetary science. The science of planets around stars | 351 | Kanwal R.P. — Linear Integral Equations: Theory and Techniques | 94, 95, 101, 107ff | Braun M. — Differential Equations and Their Applications: An Introduction to Applied Mathematics | 480, 506 | Chung K.L., Walsh J.B — Markov Processes, Brownian Motion, and Time Symmetry | 156 | Strang G. — Introduction to Applied Mathematics | 182, 188, 198, 215, 276, 278, 337 | Morkoc H. — Advanced semiconductor and organic nano-techniques | 27 | Lichnerowicz A. — Relativistic hydrodynamics and magnetohydrodynamics: Lectures on the existence of solutions | 4 | Penrose R., Rindler W. — Spinors and space-time. Spinor and twistor methods in space-time geometry | (139), see also "Wave equation" | Oertel H. — Prandtl's Essentials of Fluid Mechanics (Applied Mathematical Sciences) | 85, 88 | Greiner W. — Relativistic quantum mechanics. Wave equations | 96 | Miller W. — Symmetry and Separation of Variables | 204, 219, 222 | Zeidler E. — Oxford User's Guide to Mathematics | 425, 515, 1128 | Horn R.A. — Matrix Analysis | 239 | Pier J.-P. — Mathematical Analysis during the 20th Century | 232 | Pan G.W. — Wavelets in Electromagnetics and Device Modeling | 403 | Pitts D.R., Sissom L.E. — Schaum's outline of theory and problems of heat transfer | 17, 56, 61 | Attwood S.S. — Electric and Magnetic Fields | 167, 170, 177, 214, 437 | John F. — Partial Differential Equations | 2, 78, 94—125 | Dynkin E. — An Introduction to Branching Measure-Valued Processes | 1 | Burden R.L., Faires J.D. — Numerical analysis | 623 | Mattheij R.M. — Partial differential equations | 24, 159 | Kalton N., Saab E. — Interaction Between Functional Analysis, Harmonic Analysis, and Probability (Lecture Notes in Pure and Applied Mathematics) | 90, 93 | Groesen E., Molenaar J. — Continuum Modeling in the Physical Sciences (Monographs on Mathematical Modeling and Computation) | 189 | Shu-Ang Zhou — Electrodynamics of solids and microwave superconductivity | 468, 473 | Feynman R., Leighton R., Sands M. — Lectures on Physics 2 | II-6-1, II-7-1 | Wiedemann H. — Particle Accelerator Physics I: Basic Principles and Linear Beam Dynamics | 33, 88 | Fuchssteiner B., Lusky W. — Convex Cones (North-Holland Mathematics Studies) | 40 | Abramovich Y., Aliprantis C. — An Invitation to Operator Theory (Graduate Studies in Mathematics, V. 50) | 236 | Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 495 | Moiseiwitsch B.L. — Integral Equations | 2, 55 | Jackson J.D. — Classical electrodynamics | 34 | Kupferschmid M. — Classical FORTRAN: Programming for Engineering and Scientific Applications | 126, 573, 626, 630 | Badii R., Politi A. — Complexity: Hierarchical structures and scaling in physics | 26 | Lin C., Segel L. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 107, 552, 567 | Lin C., Segel L. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 107, 552, 567 | Lin C., Segel L. — Mathematics applied to deterministic problems in the natural sciences | 107, 552, 567 | Jost J. — Bosonic Strings: A mathematical treatment | 87 |
|
|