|
|
Авторизация |
|
|
Поиск по указателям |
|
|
|
|
|
|
|
|
|
|
Brebbia C.A., Domingues J. — Boundary elements. An introductory course |
|
|
Предметный указатель |
Accuracy of results 6
Advantages over finite element methods 6
Anisotropic elasticity 203
Anisotropic potential 128
Approximate boundary elements 276
Approximate solutions 20
Axisymmetric potential formulation 134
Axisymmetric problems in elastostatics 198
Biharmonic equation 127
Body forces terms in elastostatics 186
Boundary element formulation for elastostatics 172 177 213
Boundary element method 52
Boundary integral equations 50 165
Boundary integral formulation for elastostatics 165
Boundary points, elastostatics 168
Boundary solutions 37 39 40
CAE systems 1
Cathodic protection problems 8
Cauchy principal value 51
Collocation points for quadratic elements 101
Combination of boundary and finite elements 272
Constant elements 53 215
Constant elements, computer code for elastostatics 220
Constant elements, computer code for potential problems 57
Constitutive relations 157 211
Corner, treatment of 72 235
Cubic elements 91
Dipoles 137
Dirac delta function 38
Discontinuous elements 87 237
Domain integral terms in elastostatics 185 204
Domain integral, treatment of 137
Domain integral, treatment of, dual reciprocity 141
Domain integral, treatment of, multiple reciprocity 145
Domain integral, treatment of, particular solutions 138
Domain solution 37 41
Dual reciprocity method 141 206
Elastodynamics 283
Elastostatics 153
Elastostatics, basic equations 154
Elastostatics, two dimensional case 209
Error distribution 21
Essential conditions 16 18 33 34 157
Foundations 195
Fracture mechanics 278
Fundamental concepts 14
Fundamental solutions 38 48
Fundamental solutions for axisymmetric potential 135
Fundamental solutions for elastostatics 160
Fundamental solutions for Helmholtz equation 134
Fundamental solutions for orthotropic potential problems 129
Fundamental solutions for potential problems 142
Fundamental solutions, displacement components 162
Fundamental solutions, higher order 148
| Fundamental solutions, traction components 163
Galerkin method 23 26 29 35
Galerkin's vector 160 163
Gaussian quadrature 287
Gravitational forces 189
Hankel's functions 134
Helmholtz equation 133
Higher order elements 89
Indirect formulations in elastostatics 193
Indirect formulations in potential problems 136
Infinite domains 8
Initial stresses or strains 159 185
Integrals, evaluation 55
Internal cells 125 129
Internal points in elastostatics 179
Internal points in potential problems 55
Internal points in two dimensional elastostatics 217
Jacobian transformation 91 120 175
Lagrangian multipliers 17
Laplace equation 17 46
Linear elements 53 70 233
Linear elements, computer code for potential problems 74
Multiboundary problems, computer code for potential problems 112
Natural conditions 16 18 34 46 138 156
Navier's equations 160
Numerical integration 287
Orthotropy and anisotropy 128 203
Particular solutions 138
Plane strain 209
Plane stretching 209
Point collocation method 23 26
Poisson's equation 17 123
potential problems 45
Quadratic elements 53 89 328
Quadratic elements, computer code for elastostatics 241
Quadratic elements, computer code for potential problems 94
Quadrilateral and triangular elements for three dimensional problems 188 124
Rigid body conditions 178
Single layer potential 194
sources 137
State of strain 156
State of stress 154
Stresses on the boundary 181
Subdomain collocations 23 25
Subregions in elastostatics 190
Subregions in potential problems 131
Thermoelastic problems 189
Three dimensional problems 118
Traction discontinuities at corner points 183
Tractions and displacements components in elastostatics 180
Trefftz method 37
Variable transformation methods 291
Weak formulation 31
Weighted residual techniques 22
|
|
|
Реклама |
|
|
|