Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
Ìåõìàòÿíàì
square Ïåðâûé êóðñ

square Âòîðîé êóðñ

square Òðåòèé êóðñ

square ×åòâåðòûé êóðñ

square Ïÿòûé êóðñ
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
Êðàñîòà
blank
blank
Ðåçóëüòàò ïîèñêà

Ïîèñê êíèã, ñîäåðæàùèõ: Lorentz group



ÊíèãàÑòðàíèöû äëÿ ïîèñêà
Misner C.W., Thorne K.S., Wheeler J.A. — Gravitation242
Gomez C., Ruiz-Altaba M., Sierra G. — Quantum Groups in Two-Dimensional Physics221
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 260.J 258.A 359.B
Zeidler E. — Nonlinear Functional Analysis and its Applications IV: Applications to Mathematical Physic712
Streater R.S., Wightman A.S. — PCT, Spin and Statistics, and All That9
Felsager B. — Geometry, particles and fields287
Hoffman K., Kunze R. — Linear algebra382
Baker A. — Matrix Groups: An Introduction to Lie Group Theory26
Majid S. — Foundations of Quantum Group Theory326, 376—378, 397
Lee J.M. — Riemannian Manifolds: an Introduction to Curvature41
Ward R.S., Wells R.O. — Twistor geometry and field theory47, 60, 67, 287, 473
Goldstein H., Poole C., Safko J. — Classical mechanics282, 610
Parisi G. — Statistical field theory283
Landsman N.P. — Mathematical topics between classical and quantum mechanics394
Naber G.L. — The geometry of Minkowski spacetime: an introduction to the mathematics of the special theory of relativity15, 21
Artin M. — Algebra271
Ohnuki Y. — Unitary representations of the Poincare group and relativistic wave equations5, 47
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry481
Ryder L.H. — Quantum Field Theory36ff, 77, 427ff
Torretti R. — Relativity and Geometry6, 62, 89, 283 note 5, 295 note 12, note 15, 302 note 29
Reid M., Szendroi B. — Geometry and Topology93, 159, 161
Fock V. — The Theory of Space Time and Gravitationxiii
Weyl H. — The Classical Groups: Their Invariants and Representations, Vol. 166
Araki H. — Mathematical Theory of Quantum Fields60
Roman P. — Introduction to quantum field theory6
Hertrich-Jeromin U. — Introduction to Mobius Differential Geometry43
O'Donnel P. — Introduction to 2-Spinors in General Relativity64, 76
Ratcliffe J.G. — Foundations of Hyperbolic Manifolds57
Hall B.C. — Lie Groups, Lie Algebras, and Representations: An Elementary Understanding7, 41
Lounesto P., Hitchin N.J. (Ed), Cassels J.W. (Ed) — Clifford Algebras and Spinors124
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration386,756
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1386
Naber G.L. — Topology, Geometry and Gauge Fields82, 180
Gudder S.P. — Stochastic methods in quantum mechanics180
Shiffer M.M., Bowden L. — Role of Mathematics in Science194
Isihara A. — Statistical physics403
Ziman J.M. — Elements of Advanced Quantum Theory193, 195, 243
Kobayashi S., Nomizu K. — Foundations of Differential Geometry, Volume 2268
Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry56
Cantwell B.J., Crighton D.G. (Ed), Ablowitz M.J. (Ed) — Introduction to Symmetry Analysis146, 206
Ito K. — Encyclopedic Dictionary of Mathematics60.J, 258.A, 359.B
Thaller B. — The Dirac equation44
Gallier J. — Geometric Methods and Applications: For Computer Science and Engineering195
Bleecker D. — Gauge Theory and Variational Principles73
Stewart J. — Advanced general relativity96
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, Manifolds and Physics (vol. 2)96
De Felice F., Clarke C.J.S. — Relativity on curved manifolds135, 150
Hilgert J., Neeb K.-H. — Lie Semigroups and their Applications121
Brocker Th., Dieck T.T. — Representations of Compact Lie Groups9
Havin V.P., Nikolski N.K. (eds.) — Linear and Complex Analysis Problem Book 3 (part 2)17.8
Kilmister C.W. — General theory of relativity13
Lopuzanski J. — An introduction to symmetry and supersymmetry in quantum field theory6, 18, 46, 56, 60, 163, 170
O'Neill B. — Semi-Riemannian Geometry: With Applications to Relativity235, 240
Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds274
O'Raifeartaigh L. — Group Structure of Gauge Theories64
Berger M., Cole M. (translator) — Geometry I (Universitext)13.6.1, 19.7.3
Morimoto M. — Introduction to Sato's hyperfunctions235
Collins P.D., Squires E.J., Martin A.D. — Particle Physics and Cosmology260
Borne T., Lochak G., Stumpf H. — Nonperturbative quantum field theory and the structure of mattersee “Poincare group”
Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory129—137, 226, 240
Desloge E.A. — Classical Mechanics. Volume 1893 — 894
O`Hara J. — Energy of knots and conformal geometry111, 136
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 2) Fourier analysis, self-adjointness63
Miller W. — Symmetry Groups and Their Applications284
Aldrovandi R. — Special matrices of mathematical physics (stochastic, circulant and bell matrices)202
Weyl H. — Symmetry131
Hazewinkel M. — Handbook of Algebra (part 2)732
Collins P.D.B., Martin A.D., Squires E.J. — Particle Physics and Cosmology260
Kaiser D. — A Friendly Guide to Wavelets259
D'Inverno R. — Introducing Einstein's Relatvity109-11, 119
Greiner W., Mueller B. — Quantum mechanics: symmetries37
Weyl H. — Philosophy of mathematics and natural science107
Tomotada O. — Quantum invariants: a study of knots, 3-manifolds, and their sets5, 47
Sternberg S. — Group Theory and Physics6
Sachs R.K., Wu H. — General relativity for mathematicians260
Bogoliubov N.N., Shirkov D.V. — Introduction to the Theory of Quantized Fields9, 52, 65, 90, 93
Woodhouse N.M.J. — Geometric quantization112
Kaiser G. — Friendly Guide to Wavelets259
Carmeli M. — Classical Fields: General Gravity and Gauge Theory13, 149, 416, 456, 462, 472, 491, 626
Barut A.O., Raczka R. — Theory of Group Representations and Applications513—515
Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity163
Kleinert H. — Gauge fields in condensed matter (part 4)1428
Streater R.F., Wightman A.S. — PCT, spin and statistics and all that9
Zakharov V.D. — Gravitational waves in Einstein's theory112
Novikov S.P., Fomenko A.T. — Basic elements of differential geometry and topology363
Hermann R. — Differential geometry and the calculus of variations192, 199, 203, 205, 207, 209, 342
Duistermaat J.J, Kolk J.A.C. — Distributions: theory and applications127
Gel'fand I. M., Graev M. I., Vilenkin N. Ya. — Generalized Functions. Volume 5. Integral Geometry and Representation Theory136
Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I.290
Israel W. (ed.) — Relativity, astrophysics and cosmology15
Akhiezer A.I., Berestetskii V.B. — Quantum electrodynamics214
Ross G. — Grand Unified Theories113, 158
Porteous I.R. — Clifford Algebras and the Classical Groups238
Konopleva N.P., Popov V.N. — Gauge Fields12
Henley E.M., Thirring W. — Elementary Quantum Field Theory8, 154
Carroll R.W. — Mathematical physics375
Alicki R., Lendi K. — Quantum Dynamical Semigroups And Applications40
Lounesto P. — Clifford algebras and spinors124
Thaller B. — The Dirac equation44
Choquet-Bruhat Y. — General Relativity and the Einstein Equations24
Boerner H. — Representations of Groups300
Frankel T. — The geometry of physics: an introduction504
Naber G.L. — Topology, Geometry and Gauge Fields82, 180
Penrose R., Rindler W. — Spinors and space-time. Spinor and twistor methods in space-time geometry(233)
Anderson J.L. — Principles of Relativity Physics141—149
Laurens Jansen — Theory of Finite Groups. Applications in Physics306—307
Greiner W. — Relativistic quantum mechanics. Wave equations397
Miller W. — Symmetry and Separation of Variables242
Dieudonne J. — Linear Algebra and Geometry.Ap. II, no. 14
Barut A.O. — Electrodynamics and Classical Theory of Fields and Particles23
Ticciati R. — Quantum field theory for mathematicians54
Haag R. — Local quantum physics: fields, particles, algebras10ff
Israel W. (ed.) — Relativity, astrophysics and cosmology15
Zeidler E. — Oxford User's Guide to Mathematics838, 850, 856
Visconti A. — Quantum field theory. Volume 11—6, 91, 115
Israel W. — Relativity, Astrophysics and Cosmology15
Brown L., Dresden M., Hoddeson L. — Pions to quarks: Particle physics in the 1950s373, 492, 564
Held A. (ed.) — General relativity and gravitation. 100 years after the birth of Albert Einstein (volume 2)19, 62
Ma Z.-Q., Gu X.-Y. — Problems and Solutions in Group Theory for Physicists415
Giles R. — Mathematical foundation of thermodynamics164, 190, 223
Glimm J., Jaffe A. — Quantum Physics: A Functional Integral Point of View98, 115, 116, 280, 281
Lions J-L., Dautray R. — Mathematical Analysis and Numerical Methods for Science and Technology: Volume 2: Functional and Variational Methods491
Frankel T. — The geometry of physics: An introduction504 Lorentz group and spinor representation of Sl(2, $\mathbb{C}$)
Sexl R., Urbantke H.K. — Relativity, Groups, Particles. Special Relativity and Relativistic Symmetry in Field and Particle Physics51
Schutz B. — Geometrical Methods in Mathematical Physics67, 192
Mackey G. — Unitary Group Representations in Physics, Probability and Number Theory117, 252
Collins P.D.B., Martin A.D., Squires E.J. — Particle Physics and Cosmology260
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics290
Azcarraga J., Izquierdo J. — Lie groups, Lie algebras, cohomology and some applications in physics275
Jackson J.D. — Classical electrodynamics540, see also "Relativistic invariance"
Schiffer M.M. — The role of mathematics in science194
blank
HR
@Mail.ru
© Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01!| Valid CSS! Î ïðîåêòå