Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Misner C.W., Thorne K.S., Wheeler J.A. — Gravitation | 242 |
Gomez C., Ruiz-Altaba M., Sierra G. — Quantum Groups in Two-Dimensional Physics | 221 |
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 60.J 258.A 359.B |
Zeidler E. — Nonlinear Functional Analysis and its Applications IV: Applications to Mathematical Physic | 712 |
Streater R.S., Wightman A.S. — PCT, Spin and Statistics, and All That | 9 |
Felsager B. — Geometry, particles and fields | 287 |
Hoffman K., Kunze R. — Linear algebra | 382 |
Baker A. — Matrix Groups: An Introduction to Lie Group Theory | 26 |
Majid S. — Foundations of Quantum Group Theory | 326, 376—378, 397 |
Lee J.M. — Riemannian Manifolds: an Introduction to Curvature | 41 |
Ward R.S., Wells R.O. — Twistor geometry and field theory | 47, 60, 67, 287, 473 |
Goldstein H., Poole C., Safko J. — Classical mechanics | 282, 610 |
Parisi G. — Statistical field theory | 283 |
Landsman N.P. — Mathematical topics between classical and quantum mechanics | 394 |
Naber G.L. — The geometry of Minkowski spacetime: an introduction to the mathematics of the special theory of relativity | 15, 21 |
Artin M. — Algebra | 271 |
Ohnuki Y. — Unitary representations of the Poincare group and relativistic wave equations | 5, 47 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry | 481 |
Ryder L.H. — Quantum Field Theory | 36ff, 77, 427ff |
Torretti R. — Relativity and Geometry | 6, 62, 89, 283 note 5, 295 note 12, note 15, 302 note 29 |
Reid M., Szendroi B. — Geometry and Topology | 93, 159, 161 |
Fock V. — The Theory of Space Time and Gravitation | xiii |
Weyl H. — The Classical Groups: Their Invariants and Representations, Vol. 1 | 66 |
Araki H. — Mathematical Theory of Quantum Fields | 60 |
Roman P. — Introduction to quantum field theory | 6 |
Hertrich-Jeromin U. — Introduction to Mobius Differential Geometry | 43 |
O'Donnel P. — Introduction to 2-Spinors in General Relativity | 64, 76 |
Ratcliffe J.G. — Foundations of Hyperbolic Manifolds | 57 |
Hall B.C. — Lie Groups, Lie Algebras, and Representations: An Elementary Understanding | 7, 41 |
Lounesto P., Hitchin N.J. (Ed), Cassels J.W. (Ed) — Clifford Algebras and Spinors | 124 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 386,756 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1 | 386 |
Naber G.L. — Topology, Geometry and Gauge Fields | 82, 180 |
Gudder S.P. — Stochastic methods in quantum mechanics | 180 |
Shiffer M.M., Bowden L. — Role of Mathematics in Science | 194 |
Isihara A. — Statistical physics | 403 |
Ziman J.M. — Elements of Advanced Quantum Theory | 193, 195, 243 |
Kobayashi S., Nomizu K. — Foundations of Differential Geometry, Volume 2 | 268 |
Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 56 |
Cantwell B.J., Crighton D.G. (Ed), Ablowitz M.J. (Ed) — Introduction to Symmetry Analysis | 146, 206 |
Ito K. — Encyclopedic Dictionary of Mathematics | 60.J, 258.A, 359.B |
Thaller B. — The Dirac equation | 44 |
Gallier J. — Geometric Methods and Applications: For Computer Science and Engineering | 195 |
Bleecker D. — Gauge Theory and Variational Principles | 73 |
Stewart J. — Advanced general relativity | 96 |
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, Manifolds and Physics (vol. 2) | 96 |
De Felice F., Clarke C.J.S. — Relativity on curved manifolds | 135, 150 |
Hilgert J., Neeb K.-H. — Lie Semigroups and their Applications | 121 |
Brocker Th., Dieck T.T. — Representations of Compact Lie Groups | 9 |
Havin V.P., Nikolski N.K. (eds.) — Linear and Complex Analysis Problem Book 3 (part 2) | 17.8 |
Kilmister C.W. — General theory of relativity | 13 |
Lopuzanski J. — An introduction to symmetry and supersymmetry in quantum field theory | 6, 18, 46, 56, 60, 163, 170 |
O'Neill B. — Semi-Riemannian Geometry: With Applications to Relativity | 235, 240 |
Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds | 274 |
O'Raifeartaigh L. — Group Structure of Gauge Theories | 64 |
Berger M., Cole M. (translator) — Geometry I (Universitext) | 13.6.1, 19.7.3 |
Morimoto M. — Introduction to Sato's hyperfunctions | 235 |
Collins P.D., Squires E.J., Martin A.D. — Particle Physics and Cosmology | 260 |
Borne T., Lochak G., Stumpf H. — Nonperturbative quantum field theory and the structure of matter | see “Poincare group” |
Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory | 129—137, 226, 240 |
Desloge E.A. — Classical Mechanics. Volume 1 | 893 — 894 |
O`Hara J. — Energy of knots and conformal geometry | 111, 136 |
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 2) Fourier analysis, self-adjointness | 63 |
Miller W. — Symmetry Groups and Their Applications | 284 |
Aldrovandi R. — Special matrices of mathematical physics (stochastic, circulant and bell matrices) | 202 |
Weyl H. — Symmetry | 131 |
Hazewinkel M. — Handbook of Algebra (part 2) | 732 |
Collins P.D.B., Martin A.D., Squires E.J. — Particle Physics and Cosmology | 260 |
Kaiser D. — A Friendly Guide to Wavelets | 259 |
D'Inverno R. — Introducing Einstein's Relatvity | 109-11, 119 |
Greiner W., Mueller B. — Quantum mechanics: symmetries | 37 |
Weyl H. — Philosophy of mathematics and natural science | 107 |
Tomotada O. — Quantum invariants: a study of knots, 3-manifolds, and their sets | 5, 47 |
Sternberg S. — Group Theory and Physics | 6 |
Sachs R.K., Wu H. — General relativity for mathematicians | 260 |
Bogoliubov N.N., Shirkov D.V. — Introduction to the Theory of Quantized Fields | 9, 52, 65, 90, 93 |
Woodhouse N.M.J. — Geometric quantization | 112 |
Kaiser G. — Friendly Guide to Wavelets | 259 |
Carmeli M. — Classical Fields: General Gravity and Gauge Theory | 13, 149, 416, 456, 462, 472, 491, 626 |
Barut A.O., Raczka R. — Theory of Group Representations and Applications | 513—515 |
Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity | 163 |
Kleinert H. — Gauge fields in condensed matter (part 4) | 1428 |
Streater R.F., Wightman A.S. — PCT, spin and statistics and all that | 9 |
Zakharov V.D. — Gravitational waves in Einstein's theory | 112 |
Novikov S.P., Fomenko A.T. — Basic elements of differential geometry and topology | 363 |
Hermann R. — Differential geometry and the calculus of variations | 192, 199, 203, 205, 207, 209, 342 |
Duistermaat J.J, Kolk J.A.C. — Distributions: theory and applications | 127 |
Gel'fand I. M., Graev M. I., Vilenkin N. Ya. — Generalized Functions. Volume 5. Integral Geometry and Representation Theory | 136 |
Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 290 |
Israel W. (ed.) — Relativity, astrophysics and cosmology | 15 |
Akhiezer A.I., Berestetskii V.B. — Quantum electrodynamics | 214 |
Ross G. — Grand Unified Theories | 113, 158 |
Porteous I.R. — Clifford Algebras and the Classical Groups | 238 |
Konopleva N.P., Popov V.N. — Gauge Fields | 12 |
Henley E.M., Thirring W. — Elementary Quantum Field Theory | 8, 154 |
Carroll R.W. — Mathematical physics | 375 |
Alicki R., Lendi K. — Quantum Dynamical Semigroups And Applications | 40 |
Lounesto P. — Clifford algebras and spinors | 124 |
Thaller B. — The Dirac equation | 44 |
Choquet-Bruhat Y. — General Relativity and the Einstein Equations | 24 |
Boerner H. — Representations of Groups | 300 |
Frankel T. — The geometry of physics: an introduction | 504 |
Naber G.L. — Topology, Geometry and Gauge Fields | 82, 180 |
Penrose R., Rindler W. — Spinors and space-time. Spinor and twistor methods in space-time geometry | (233) |
Anderson J.L. — Principles of Relativity Physics | 141—149 |
Laurens Jansen — Theory of Finite Groups. Applications in Physics | 306—307 |
Greiner W. — Relativistic quantum mechanics. Wave equations | 397 |
Miller W. — Symmetry and Separation of Variables | 242 |
Dieudonne J. — Linear Algebra and Geometry. | Ap. II, no. 14 |
Barut A.O. — Electrodynamics and Classical Theory of Fields and Particles | 23 |
Ticciati R. — Quantum field theory for mathematicians | 54 |
Haag R. — Local quantum physics: fields, particles, algebras | 10ff |
Israel W. (ed.) — Relativity, astrophysics and cosmology | 15 |
Zeidler E. — Oxford User's Guide to Mathematics | 838, 850, 856 |
Visconti A. — Quantum field theory. Volume 1 | 1—6, 91, 115 |
Israel W. — Relativity, Astrophysics and Cosmology | 15 |
Brown L., Dresden M., Hoddeson L. — Pions to quarks: Particle physics in the 1950s | 373, 492, 564 |
Held A. (ed.) — General relativity and gravitation. 100 years after the birth of Albert Einstein (volume 2) | 19, 62 |
Ma Z.-Q., Gu X.-Y. — Problems and Solutions in Group Theory for Physicists | 415 |
Giles R. — Mathematical foundation of thermodynamics | 164, 190, 223 |
Glimm J., Jaffe A. — Quantum Physics: A Functional Integral Point of View | 98, 115, 116, 280, 281 |
Lions J-L., Dautray R. — Mathematical Analysis and Numerical Methods for Science and Technology: Volume 2: Functional and Variational Methods | 491 |
Frankel T. — The geometry of physics: An introduction | 504
Lorentz group and spinor representation of Sl(2, $\mathbb{C}$) |
Sexl R., Urbantke H.K. — Relativity, Groups, Particles. Special Relativity and Relativistic Symmetry in Field and Particle Physics | 51 |
Schutz B. — Geometrical Methods in Mathematical Physics | 67, 192 |
Mackey G. — Unitary Group Representations in Physics, Probability and Number Theory | 117, 252 |
Collins P.D.B., Martin A.D., Squires E.J. — Particle Physics and Cosmology | 260 |
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 290 |
Azcarraga J., Izquierdo J. — Lie groups, Lie algebras, cohomology and some applications in physics | 275 |
Jackson J.D. — Classical electrodynamics | 540, see also "Relativistic invariance" |
Schiffer M.M. — The role of mathematics in science | 194 |