|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Konopleva N.P., Popov V.N. — Gauge Fields |
|
|
Ïðåäìåòíûé óêàçàòåëü |
Affine connection 34 114
asymptotic freedom 36
Base (of a fiber space) 18—19 98
Cabibbo angle 45
Characteristic classes 132
Charm 36 46
Charmonium 36
Chern classes 132—135
Chiral symmetry 38
COLOR 36
confinement 36
Connection coefficients 4—9 11 21 110
Connection coefficients of a fiber space 116—117
Connection coefficients, gauge fields as 112
Connection coefficients, nonsymmetric 101—102
Connection forms 110
Conservation laws in general relativity 90
Conservation laws in isoperimetric problems 83
Conservation laws, for electrodynamics of a medium 197
Conservation laws, integral 97 91—99 107
Conservation laws, proper 63
Conservation laws, strong 19 93—94 63
Conservation laws, weak 19 63
Covariant derivative 21 29 33 117—118
Currents in Noether's first theorem 97
Currents, anomalous 133
Currents, improper 93—94 98
de Sitter group 86 93
Defects (In a medium) 129—132
Diagrammatic technique, for a real scalar field 183—187
Diagrammatic technique, for the gravitational field 220—223
Diagrammatic technique, for Yang — Hills fields 204—207 211—213
Diagrammatic technique, in quantum electrodynamics 199
Differential forms 105
Dual models 37
Electrodynamics of a medium 153—160
Embedding 99 149—150
Energy-momentum tensor, for electrodynamics 156—160
Energy-momentum tensor, of a gauge field 148
Equivalence, principle of 6
Erlanger Programm 14
Evolution operator 173
Exterior derivative 106
Exterior product 105—106
Extremal 57
Faddeev model 235—239
Fiber 10 18—19 98
Fiber space 3—4 10 17 19 98 114
Fiber space, associated 114
Fiber space, connection coefficients of 116—117
Fiber space, covariant derivatives in 117—118
Fiber space, curvature tensor of 118—119
Fiber space, holonomy group of 121—122
Fiber space, principal 114
Fiber space, tangent 31
Force, concept of 12
Galilean group 12
Gauge fields and the structure of space-time 139—148
Gauge fields, classification of 120—122 132—139
Gauge fields, concept of 2 9
Gauge fields, motion of particles in 148—149
Gauge fields, non-Abelian 36
Gauge fields, quantization of 190
Gauge invariance, local 2—3 8 21
Gauge transformations 7
General covariant transformations 12 15
General relativity 84—95
Generating functional 180 193 198
Geodesics 97—98
Geometrodynamics 102—103
Geons 103
Gluons 36 48
Goldstone model 240
Gravitation, as a gauge theory 31—34 103—104 145—148
Gravitation, as a gauge theory in strong interactions 41
Gravitation, as a gauge theory, quantum theory of 214—231
Green's functions 180—183 193 198—201 203 210—213
Group 1
Group, transitive 98
Harmonicity conditions 216
Higgs mechanism 44—49 80—81 232
Holonomy group 99 120—129
Homogeneous space 14
Homotopy group 120 130
Horizontal paths 116
Inertial system 12 97—98
instantons 27—28 100 135—137 148
Interactions, geometrization of 3—4 15—18 97
Interactions, hierarchy of 43—44 99
Isoperimetric problems 76—80
Isoperimetric problems, conservation laws in 83
Isospin 9
Isospin invariance, local 9—10 21
Killing vector 86
Kinks 138
Lagrangian derivative 57
Lagrangians, construction of 65—67 73—76
| Lie derivative 85—86
Lorentz group 12
Mass generation 80—83 232
Mass splittings 43—44
Maxwell's equations 106—107
Mechanical systems, canonical quantization of 172—173
Mechanical systems, Hamiltonian formalism for 166—172
Mechanical systems, path integral for 173—178
Minkowski space 11
Mixing angle 45
Monopoles, magnetic 26—27 133—135 248
Neutral currents 45 234—235
Noether's identities, and conservation laws 68—70
Noether's identities, for electrodynamics 63
Noether's theorems 57—63
Noether's theorems, generalized 76—78
Noether's theorems, inverse 71—72
Notophs 88
Ordered media 129—132
Path integral in quantum electrodynamics 195—200
Path integral in quantum field theory 179—180 187—188
Path integral, for gauge fields 191—194
Path integral, for simple mechanical systems 173—176
Path integral, for systems with constraints 176—178
Path integral, for the gravitational field 217—219 228—231
Path integral, for Yang — Mills fields 202 206—211
Perturbation theory in quantum electrodynamics 198—199
Perturbation theory, for a real scalar field 182—183
Perturbation theory, for gauge fields 193—194
Perturbation theory, for the gravitational field 219
Perturbation theory, for Yang — Mills fields 203—207
Pfaffian derivatives 105
Pfaffian forms 105
Poincare group 12 86 95
Poincare group for a fiber space 122
Poisson bracket 170—172
Principal forms 109
Quantization, of Boss and Fermi fields 188
Quantization, of gauge fields 190
Quantization, of mechanical systems 172—173
Quantization, of the electromagnetic field 197
Quantization, of the gravitational field 214 224
Quantization, of Yang — Mills fields 202 208—209
Quantum electrodynamics 194—201
Quarks 35—36 48
Reggeism 36—37
Regular representation 54
Relativity, principle of 11—12
Renormalizability 43—44 235
Riemannian space 11 14
Riemannian space, groups of motions of 86
Sakurai's theory 34—35
Self-action 100
Sine — Gordon equation 138
Solitons 100 137—139 146
Spontaneous symmetry breaking 44—45 80—81 232
Stability, topological 130
strings 37
Strong interactions, gauge theories of 34—36
Strong interactions, universality of 39—41
Structure equations 110—112
SU(3) symmetry 35
Superconductivity 45
Supersymmetry 45
Supplementary conditions 53 70—71
Symmetries, algebraic 37—38 43
Symmetries, dynamical 37—38
Symmetry breaking 8
Symmetry group 1
Tachyons 240
Tangent bundle 98 114
Tensor dominance 41
Test body 16
Tetrads 31
Torsion 101—102
Tunneling (between vacua) 137
Unified theories 20 45—46 98—103 150—153 231—239
Universality, of strong interactions 39—41
Universality, of weak interactions 41—43
Utiyama's theory 28—33
Vector dominance 39—41
Vertical vectors 115
Vortices 130—131
Vortices, quantum 243—249
Ward identity 200
Weak interactions, universality of 41—43
Weinberg angle 45
Weinberg — Salam model 43 45 232—235
Weyl transformations 41
Wick's theorem 182
Yang — Mills equations 23 100
Yang — Mills equations with a point source 125—127
Yang — Mills equations, instanton solutions of 27—28
Yang — Mills equations, monopole solutions of 26—27 133—134
Yang — Mills equations, spherically symmetric free-field solutions of 23—26
Yang — Mills field 21—22
Yang — Mills field, quantum theory of 201—213
Zero-charge problem 36
|
|
|
Ðåêëàìà |
|
|
|