Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Konopleva N.P., Popov V.N. — Gauge Fields
Konopleva N.P., Popov V.N. — Gauge Fields



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Gauge Fields

Àâòîðû: Konopleva N.P., Popov V.N.

Àííîòàöèÿ:

Translation of Kalibrovochnye polya. Includes bibliographical references and index.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1981

Êîëè÷åñòâî ñòðàíèö: 264

Äîáàâëåíà â êàòàëîã: 09.06.2006

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Affine connection      34 114
asymptotic freedom      36
Base (of a fiber space)      18—19 98
Cabibbo angle      45
Characteristic classes      132
Charm      36 46
Charmonium      36
Chern classes      132—135
Chiral symmetry      38
COLOR      36
confinement      36
Connection coefficients      4—9 11 21 110
Connection coefficients of a fiber space      116—117
Connection coefficients, gauge fields as      112
Connection coefficients, nonsymmetric      101—102
Connection forms      110
Conservation laws in general relativity      90
Conservation laws in isoperimetric problems      83
Conservation laws, for electrodynamics of a medium      197
Conservation laws, integral      97 91—99 107
Conservation laws, proper      63
Conservation laws, strong      19 93—94 63
Conservation laws, weak      19 63
Covariant derivative      21 29 33 117—118
Currents in Noether's first theorem      97
Currents, anomalous      133
Currents, improper      93—94 98
de Sitter group      86 93
Defects (In a medium)      129—132
Diagrammatic technique, for a real scalar field      183—187
Diagrammatic technique, for the gravitational field      220—223
Diagrammatic technique, for Yang — Hills fields      204—207 211—213
Diagrammatic technique, in quantum electrodynamics      199
Differential forms      105
Dual models      37
Electrodynamics of a medium      153—160
Embedding      99 149—150
Energy-momentum tensor, for electrodynamics      156—160
Energy-momentum tensor, of a gauge field      148
Equivalence, principle of      6
Erlanger Programm      14
Evolution operator      173
Exterior derivative      106
Exterior product      105—106
Extremal      57
Faddeev model      235—239
Fiber      10 18—19 98
Fiber space      3—4 10 17 19 98 114
Fiber space, associated      114
Fiber space, connection coefficients of      116—117
Fiber space, covariant derivatives in      117—118
Fiber space, curvature tensor of      118—119
Fiber space, holonomy group of      121—122
Fiber space, principal      114
Fiber space, tangent      31
Force, concept of      12
Galilean group      12
Gauge fields and the structure of space-time      139—148
Gauge fields, classification of      120—122 132—139
Gauge fields, concept of      2 9
Gauge fields, motion of particles in      148—149
Gauge fields, non-Abelian      36
Gauge fields, quantization of      190
Gauge invariance, local      2—3 8 21
Gauge transformations      7
General covariant transformations      12 15
General relativity      84—95
Generating functional      180 193 198
Geodesics      97—98
Geometrodynamics      102—103
Geons      103
Gluons      36 48
Goldstone model      240
Gravitation, as a gauge theory      31—34 103—104 145—148
Gravitation, as a gauge theory in strong interactions      41
Gravitation, as a gauge theory, quantum theory of      214—231
Green's functions      180—183 193 198—201 203 210—213
Group      1
Group, transitive      98
Harmonicity conditions      216
Higgs mechanism      44—49 80—81 232
Holonomy group      99 120—129
Homogeneous space      14
Homotopy group      120 130
Horizontal paths      116
Inertial system      12 97—98
instantons      27—28 100 135—137 148
Interactions, geometrization of      3—4 15—18 97
Interactions, hierarchy of      43—44 99
Isoperimetric problems      76—80
Isoperimetric problems, conservation laws in      83
Isospin      9
Isospin invariance, local      9—10 21
Killing vector      86
Kinks      138
Lagrangian derivative      57
Lagrangians, construction of      65—67 73—76
Lie derivative      85—86
Lorentz group      12
Mass generation      80—83 232
Mass splittings      43—44
Maxwell's equations      106—107
Mechanical systems, canonical quantization of      172—173
Mechanical systems, Hamiltonian formalism for      166—172
Mechanical systems, path integral for      173—178
Minkowski space      11
Mixing angle      45
Monopoles, magnetic      26—27 133—135 248
Neutral currents      45 234—235
Noether's identities, and conservation laws      68—70
Noether's identities, for electrodynamics      63
Noether's theorems      57—63
Noether's theorems, generalized      76—78
Noether's theorems, inverse      71—72
Notophs      88
Ordered media      129—132
Path integral in quantum electrodynamics      195—200
Path integral in quantum field theory      179—180 187—188
Path integral, for gauge fields      191—194
Path integral, for simple mechanical systems      173—176
Path integral, for systems with constraints      176—178
Path integral, for the gravitational field      217—219 228—231
Path integral, for Yang — Mills fields      202 206—211
Perturbation theory in quantum electrodynamics      198—199
Perturbation theory, for a real scalar field      182—183
Perturbation theory, for gauge fields      193—194
Perturbation theory, for the gravitational field      219
Perturbation theory, for Yang — Mills fields      203—207
Pfaffian derivatives      105
Pfaffian forms      105
Poincare group      12 86 95
Poincare group for a fiber space      122
Poisson bracket      170—172
Principal forms      109
Quantization, of Boss and Fermi fields      188
Quantization, of gauge fields      190
Quantization, of mechanical systems      172—173
Quantization, of the electromagnetic field      197
Quantization, of the gravitational field      214 224
Quantization, of Yang — Mills fields      202 208—209
Quantum electrodynamics      194—201
Quarks      35—36 48
Reggeism      36—37
Regular representation      54
Relativity, principle of      11—12
Renormalizability      43—44 235
Riemannian space      11 14
Riemannian space, groups of motions of      86
Sakurai's theory      34—35
Self-action      100
Sine — Gordon equation      138
Solitons      100 137—139 146
Spontaneous symmetry breaking      44—45 80—81 232
Stability, topological      130
strings      37
Strong interactions, gauge theories of      34—36
Strong interactions, universality of      39—41
Structure equations      110—112
SU(3) symmetry      35
Superconductivity      45
Supersymmetry      45
Supplementary conditions      53 70—71
Symmetries, algebraic      37—38 43
Symmetries, dynamical      37—38
Symmetry breaking      8
Symmetry group      1
Tachyons      240
Tangent bundle      98 114
Tensor dominance      41
Test body      16
Tetrads      31
Torsion      101—102
Tunneling (between vacua)      137
Unified theories      20 45—46 98—103 150—153 231—239
Universality, of strong interactions      39—41
Universality, of weak interactions      41—43
Utiyama's theory      28—33
Vector dominance      39—41
Vertical vectors      115
Vortices      130—131
Vortices, quantum      243—249
Ward identity      200
Weak interactions, universality of      41—43
Weinberg angle      45
Weinberg — Salam model      43 45 232—235
Weyl transformations      41
Wick's theorem      182
Yang — Mills equations      23 100
Yang — Mills equations with a point source      125—127
Yang — Mills equations, instanton solutions of      27—28
Yang — Mills equations, monopole solutions of      26—27 133—134
Yang — Mills equations, spherically symmetric free-field solutions of      23—26
Yang — Mills field      21—22
Yang — Mills field, quantum theory of      201—213
Zero-charge problem      36
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå