| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà | 
| Cardy J. — Scaling and renormalization in statistical physics |  | 
| Abell M., Braselton J. — Differential Equations with Mathematica | 563 | 
| Abramowitz M., Stegun I. (eds.) — Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Table | 17 | 
| Apostol T.M. — Calculus (vol 1) | 305 | 
| Hunter J.K., Nachtergaele B. — Applied Analysis | 168, 273, 370 | 
| Apostol T.M. — Calculus (vol 2) | 283, 292 | 
| Falconer K. — Fractal Geometry. Mathematical Foundations and applications | 271 | 
| Falconer K. — Fractal Geometry: Mathematical Foundations and Applications | 304, 305 | 
| Evans L.C. — Partial Differential Equations | 3, 9, 20—43, 295 | 
| Hayek S.I. — Advanced mathematical methods in science and engineering | 196, 295, 308, 319 | 
| Zienkiewicz O.C., Taylor L.R. — The finite element method (vol. 3, Fluid dynamics) | 96, 265, 266 | 
| Meyer C.D. — Matrix analysis and applied linear algebra | 624 | 
| Goldberg S.I. — Curvature and homology | 69 | 
| Versteeg H.K., Malalasekera W. — An introduction to computational fluid dynamics | 27 | 
| Whittaker E.T., Watson G.N. — A Course of Modern Analysis | 386 | 
| Weinstock R. — Calculus of variations with applications to physics & engineering | 295, 309 | 
| Smith M.S. — Principles and Applications of Tensor Analysis | 59—65 | 
| Benson D. — Mathematics and music | 398 | 
| Clift R., Grace J.R., Weber M.E. — Bubbles, drops, and particles | 7, 88 | 
| Batchelor G.K. — An Introduction to Fluid Dynamics | 101 | 
| Debnath L. — Nonlinear water waves | 5, 12, 36, 102, 116, 130, 275, 337, 352, 372, 469, 478, 481 | 
| Polya G., Latta G. — Complex Variables | 95 | 
| Becker A.A. — The Boundary Element Method in Engineering. A complete course | 6, 41, 94, 126, 145, 244 | 
| Edwards H. — Advanced Calculus: A Differential Forms Approach | 278, 288 (Ex. 2) | 
| Bergman S., Schiffer M. — Kernel Functions and Elliptic Differential Equations in Mathematical Physics | 4, 30, 73 | 
| Edminister J.A. — Schaum's outline of electromagnetics | 114—134 | 
| Rutherford D.E. — Vector Methods | 85, 111 | 
| Powers D.L. — Boundary Value Problems: And Partial Differential Equations | See potential equation | 
| Ablowitz M.J., Fokas A.S. — Complex Variables: Introduction and Applications | 39 | 
| Ivey Th.A., Landsberg J.M. — Cartan for Beginners: Differential Geometry Via Moving Frames and Exterior Differential Systems | 223 | 
| McMano D., Topa D.M. — A Beginner's Guide to Mathematica | 487 | 
| Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1 | See Potential theory | 
| Egorov Y.U. (Ed), Gamkrelidze R.V. (Ed) — Partial Differential Equations I: Foundations of the Classical Theory | 14, 37, 220 | 
| Cover T.M., Gopinath B. — Open problems in communication and computation | 167 | 
| Volakis J.L., Chatterjee A., Kempel L.C. — Finite element method for elecromagnetics | 94 | 
| Planck M. — Mechanics of Deformable Bodies: Being Volume II of "Introduction to Theoretical Physics" | 136, 179, 187, 202 | 
| Sokolnikoff I.S. — Higher Mathematics  for  Engineers and Physicists | 195, 369, 382, 385, 386, 439, 451, 470, 481 | 
| Guimaraes A.P. — Magnetism and Magnetic Resonance in Solids | 163, 256 | 
| Korner T.W. — Fourier Analysis | see also “Dirichlet problem” | 
| Zauderer E. — Partial Differential Equations of Applied Mathematics | 28, 48, 121, 199, 212, 257, 269, 282, 380, 485, 573, 579, 589, 623, 637 | 
| Haas A.E. — Introduction to theoretical physics, Vol. 1 and 2 | 186 | 
| Ewald P.P. — The physics of solids and fluids | 29, 236, 290 | 
| Klinzing G.E. — Gas-Solid Transport | 38 | 
| Schercliff J.A. — Vector Fields | 154, 173, 219, 295, 311, 315 | 
| Apostol T.M. — Calculus: One-Variable Calculus with an Introduction to Linear Algebra, Vol. 1 | 305 | 
| Born M. — Atomic Physics | 299, 305 | 
| Stakgold I. — Green's Functions and Boundary Value Problems | 176, 475, 481, 502—520, See also "Harmonic functions" | 
| Reist P.C. — Aerosol Science and Technology | 212—214 | 
| Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 2 | see Potential theory | 
| Erdelyi A. — Higher Transcendental Functions, Vol. 1 | 120, 173 | 
| Fletcher C.A. — Computational Techniques for Fluid Dynamics. Vol. 1 | 13, 107—116 | 
| Eddington A.S. — Space Time and Gravitation | 96, 140 | 
| Munk M.M. — Fundamentals Of Fluid Dynamics For Aircraft Designers | 14, 47, 51 | 
| Kammler D.W. — First Course in Fourier Analysis | 525, 591 | 
| Kilmister C.W. — General theory of relativity | 20, 24, 176 | 
| Bao G., Cowsar L., Masters W. — Mathematical Modeling in Optical Science | 98 | 
| Kunz K.S., Luebbers R.J. — The finite difference time domain method for electromagnetics | 328 | 
| Dubrovin B.A., Fomenko A.T., Novikov S.P. — Modern Geometry - Methods and Applications. Part 1. The Geometry of Surfaces, Transformation Groups and Fields | 85 | 
| Demmel J.W. — Applied Numerical Linear Algebra | 265 | 
| MacRobert T.M. — Spherical Harmonics an Elementary Treatise on Harmonic Functions with Applications | 74, 147 | 
| Freund L.B. — Dynamic Fracture Mechanics | 30 | 
| Jackson J.D. — Classical electrodynamics | 13 | 
| Shirer H.N. — Nonlinear Hydrodynamic Modeling: A Mathematical Introduction | 458, 459 | 
| Gray C.G., Gubbins K.E. — Theory of molecular fluids | 48, 449 | 
| Egorov Y.V., Shubin M.A. — Partial Differential  Equations I  (Foundations of the Classical) | 14, 37, 220 | 
| Ward S.A. — Computation Structures | 609 | 
| Bamberg P.G., Sternberg S. — A Course in Mathematics for Students of Physics, Vol. 1 | 227 | 
| Davies B. — Integral Transforms and Their Applications | 129, 190, 233 | 
| Neff H.P.Jr. — Introductory electromagnetics | 62—63, 231 | 
| Lawden D.F. — An Introduction to Tensor Calculus, Relativity and Cosmology | 26 | 
| Stakgold I. — Boundary value problems of mathematical physics | 40, 49—53, 88—192, see also "Harmonic functions" | 
| Tannehill J.C., Pletcher R.H., Anderson D.A. — Computational Fluid Mechanics and Heat Transfer | 11, 16—19, 32—34, 144—148, 326, 431—437, 688—694 | 
| Thompson Philip A. — Compressible-fluid dynamics | 15n., 151, 257 | 
| Àìåíçàäå Þ.À. — Òåîðèÿ óïðóãîñòè | 87 | 
| Carl D. Meyer — Matrix Analysis and Applied Linear Algebra Book and Solutions Manual | 624 | 
| Fordy A.P., Wood J.C. (eds.) — Harmonic maps and integrable systems | 30, 33 | 
| Demmel J. — Applied numerical linear algebra | 265 | 
| Efimov A.V. — Mathematical analysis: advanced topics. Part 2. Application of some methods of mathematical and functional analysis | 88 | 
| Batchelor G. — Introduction to Fluid Dynamics | 101 | 
| Schwartz M. — Principles of electrodynamics | 42 | 
| Harman T.L., Dabney J.B., Richert N.J. — Advanced Engineering Mathematicas with MATLAB | 621, 717, 720 | 
| Maxwell J.C. — Treatise on electricity and magnetism. Volume Two | 26, 77, 301 | 
| Courant R., Hilbert D. — Methods of Mathematical Physics. Volume 1 | see "Potential equation" | 
| Murray D.A. — Introductory Course In Differential Equations: For Students In Classical And Engineering Colleges | 182 | 
| Rainville E. D. — Intermediate Course in Differential Equations | 206, 209 | 
| Abell  M.L., Braselton J.P. — Differential equations with Mathematica | 563 | 
| Gloub G.H., Ortega J.M. — Scientific Computing and Differential Equations | 247 | 
| Stibitz G.R., Larrivee J.A. — Mathematics and Computers | 61 | 
| Stratton J.A. — Electromagnetic Theory | 162, 167 | 
| Hildebrand F.B. — Methods of Applied Mathematics | 138, 177, 219(100), 303(27—33) | 
| Collatz L. — The numerical treatment of differential equations | 347, 349, 355, 361, 368, 371, 380, 387, 403, 437, 440, 451—452 | 
| Wolfgang K. H. Panofsky, Phillips Panofsky, Melba Panofsky — Classical Electricity and Magnetism | 11, 53 | 
| Gould H., Tobochnik J., Christian W. — An introduction to computer simulation methods | 379, see also "Partial differential equations" | 
| Anderssen R.S., de Hoog F.R., Lukas M.A. — The application and numerical solution of integral equations | 22, 76, 135, 136 | 
| Davis H.T. — Introduction to nonlinear differential and integral equations | 48, 453 | 
| Marder M.P. — Condensed matter physics | 96, 358, 366 | 
| Slater J.C., Frank N.H. — Electromagnetism | 4, 23—27, 29—40, 44, 168—173 | 
| Ivey T.A., Landsberg J.M. — Cartan for beginners: differential geometry via moving frames exterior differential systems | 223 | 
| Hinrichsen D., Pritchard A. — Mathematical Systems Theory I: Modelling, State Space Analysis, Stability and Robustness | 41 | 
| Kuttler K. — Notes for Partial Differrential Equations | 113 | 
| Griffits D.J. — Introductions to electrodynamics | 83, 110—114, 116 | 
| Schutz B.F. — A first course in general relativity | 208 | 
| Blum E.K., Lototsky S.V. — Mathematics of Physics and Engineering | 158 | 
| Jeffreys H. — Methods Of Mathematical Physics | 198, 202, 339, 437, 528, 658 | 
| Synge J.L., Griffith B.A. — Principles of Mechanics | 381, 382 | 
| Wrede R.C., Spiegel M. — Theory and problems of advanced calculus | 129, see also "Laplacian operator" | 
| Koonin S.E., Meredith D.C. — Computational Physics-Fortran Version | 157ff | 
| Bluman G.W. — Similarity Methods for Differential Equations | 282, 291, 302, 303 | 
| Acton F.S. — Numerical Methods That Work | Chapter 18 | 
| Apostol T.M. — Calculus (Volume 2): Multi-Variable Calculus and Linear Algebra with Applications | 283, 292 | 
| Kravens T.E. — Physic of Solar System Plasmas | 214—215, 468 | 
| Langhaar H.R. — Energy Methods in Applied Mechanics | 27 | 
| Langhaar H.R. — Energy Methods in Applied Mechanics | 27 | 
| Arscott F.M. — Periodic Differential Equations: An Introduction to Mathieu, Lame, and Allied Functions | 14, 19, 191, 213, 228—230 | 
| Jeans J.H. — The Mathematical Theory of Electricity and Magnetism | 40, 120, 238, 241 | 
| Farina J.E.G. — Quantum theory of scattering processes | 14 | 
| Lienhardt J.H. IV, Lienhardt J.H. V — A heat transfer textbook | 235 | 
| Johnson W.C. — Mathematical and physical principles of engineering analysis | 307, 309, 321 | 
| Courant R. — Differential and Integral Calculus, Vol. 1 | 479 | 
| Lyons L. — All You Wanted to Know about Mathematics but Were Afraid to Ask - Mathematics for Science Students. Volume 1 | 230 | 
| Woods F.S. — Advanced Calculus | 301, 306 | 
| Kirk J., Melrose D., Priest E. — Plasma astrophysics | 29 | 
| Planck M. — Theory of light | 81 | 
| Lord E., Wilson C. — The Mathematical Description of Shape and Form (Mathematics and Its Applications) | 69, 218, 235 | 
| Abramowitz M., Stegun I.A. (eds.) — Handbook of mathematical functions (without numerical tables) | 17 | 
| Zorich V.A., Cooke R. — Mathematical analysis II | 304, 524 | 
| Park R., Lagally M. — Methods of Experimental Physics.Volume 22.Solid State Physics:Surfaces. | 350 | 
| Zorich V. — Mathematical Analysis | 304, 524 | 
| Young D.M., Gregory R.T. — A Survey of Numerical Mathematics, Volume 2 | 12, 951—952, 995 | 
| Falconer K. — Fractal geometry: mathematical foundations and applications | 304, 305 | 
| Ward S., Halstead R. — Computation Structures (MIT Electrical Engineering and Computer Science) | 609 | 
| Tannehill J.C., Anderson D.A., Pletcher R.H. — Computational Fluid Mechanics and Heat Transfer | 11, 16—19, 32—34, 144—148, 326, 431—437, 688—694 | 
| Mathews J., Walker R.L. — Mathematical Methods of Physics | 218, 232 | 
| Davies B. — Integral Transforms and their Applications | 129, 190, 233 | 
| Morrey C. — Multiple integrals in the calculus of variations | 43 | 
| Kline M. — Mathematical thought from ancient to modern times | see "Potential theory" | 
| Dennery P., Krzywicki A. — Mathematics for Physicists | 15 |