Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Murray D.A. — Introductory Course In Differential Equations: For Students In Classical And Engineering Colleges
Murray D.A. — Introductory Course In Differential Equations: For Students In Classical And Engineering Colleges



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Introductory Course In Differential Equations: For Students In Classical And Engineering Colleges

Автор: Murray D.A.

Аннотация:

A brief exposition of some of the devices employed in solving differential equations, the book is designed for undergraduate students of physics and engineering, and students who intend to study higher mathematics.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1897

Количество страниц: 234

Добавлена в каталог: 11.12.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
airy      205
Aldis      150 153
Applications to geometry      50—58 121 134 140 141 158
Applications to mechanics      58 122 144
Applications to physics      62 122 120 144 145
Auxiliary equation      65—67 175
Bedell      145
bernoulli      28
Bessel's equation      105 106
Bessell      105 106
Bocher      207
Boole      23 66 206
Boussinesq      206
Briot and Bouquet      193 194 203
Brooks      204
Byerly      105 106 169 184 205
Cajori      202
Cauchy      193 194 203
Cayley      40 48
Characteristic      151
Charpit      166
Charpit, method of      166
Chrystal      49
Clairaut      36 40 44
Clairaut's equation      36 44
Complementary function      63 174 179
Condition that equation be exact      18 92 197
Constants of integration      2 149 194 195
Craig      202 203 204 207
Criterion for independence of, constants      195
Criterion for independence of, integrals      197
Criterion of integrability      136 138 200
Cuspidal Locus      47
D'Alembert      146 173
De Martres      206
De Morgan      205
Derivation, of ordinary equations      4
Derivation, of partial equations      146 148
Discriminant      40
du Bois-Reymond      206
Duhamel      206
Edwards      4 5 48 52 54 149 183 184 205
Emtage      126 183 185
Envelope      41—44 150
Equation of cuspidal locus      47—49
Equation of envelope      42
Equation of tac-locus      45 48 49
Equation, auxiliary      65—67 175
Equation, Clairaut's      36 44
Equation, decomposable      31
Equation, definitions      1 17 92 146
Equation, derivation of      4 146 148
Equation, geometrical meaning      8—10 134 140 142 158
Equation, Laplace's      182
Equation, Legendre's      90 105
Equation, linear, partial      153—158 173
Equation, of nodal locus      45 48 49
Equation, partial of first order      149—169
Equation, partial, linear      153—158 169—187
Equation, partial, linear homogeneous      174—178
Equation, partial, linear non-homogeneous      179—181
Equation, partial, non-linear, integrals of      149—153
Equation, Poisson's      186
Equation, single non-integrable      142
Equations of hypergeometric series      105 107
Equations of second order      109—119
Equations, Bessel's      105 106
Equations, exact      17—19 92—94 197
Equations, homogeneous      15 35 82—84 90 138 174
Equations, invariants of      204
Equations, linear, ordinary      26 28 63 64 70 82—84 90 101 128
Equations, linear, simultaneous      128—133
Equations, Monge's      171
Equations, non-homogeneous      16 179
Equations, not decomposable      32
Equations, partial, definition, derivation      2 146 148
Equations, partial, of second and higher orders      169—187
Equations, Reduction to equivalent system      189
Equations, Riccati's      105 106
Equations, simultaneous      128—134
Equations, single integrable      136 138 200
Equations, transformation of      28 90 114 115 117 182
Equations, works on      205—207
Euler      64 107 146
Existence theorem      190
Factors, integrating      21—26
Fiske      193
Forsyth      48 69 80 86 94 101 106 107 111 116 138 159 168 172 202 205 206
Fuchs      203
Galois      204
Gauss      107 202
Geometrical meaning      8—10 134 140 142 158
Geometry      see "Application"
Gilbert      193
Glaisher      48 106
Goursat      207
gray      106
Halphen      204 205
Heffter      207
hilbert      190 194
Hill      49
Homogeneous      see "Equation"
Houeel      206
Hymers      206
Hypergeometric series, equation of      105 107
Integrability, criterion of      136 138 200
Integral of linear partial equations      153 see
Integral, general      150 see
Integral, particular      6 64 73—80 87—90 149 176 180 see
Integral, singular      150 see
Integrals and coefficients      199 see
Integrals of simultaneous equations      133 see
Integrals, complete      64 149 see
Integrals, first      94 see
Integrals, relation between      111 see
Integrating factors      21—26
Integration, constants of      see "Constants"
Invariants      204
Johnson      25 48 80 105 106 107 111 138 149 168 176 180 205 206
JORDAN      206
Klein      207
Koenigsberger      193 206
Kowalevsky      194
Lagrange      40 114 151 154 155 166
Lagrange's Solution      154 155
Lagrangean lines      155
Laguerre      204
Lamb      184
Laplace      105 182 184
Laplace's equation      182
laurent      206
legendre      90 105 184
Legendre's equation      105
Leibniz      27 40
Lie      202 204 207
Liouville      200
Lipschitz      193
Locus      8 42 45 47—49 141 151
Mansion      193 207
Mathews      106 203 207
McMahon      54 65 196 197
Mechanics, applications to      see "Applications"
Meray      193
Merriman      126 127
Merriman and Woodward      54 127 176 202
Modern theories      202
Moigno      25 193 206
Monge      171
Monge's equations, method      171
Newton      27
Nodal Locus      45 48 49
Osborne      205
Page      204 207
Painleve      206 207
Particular integrals      see "Integral"
Peirce      183 186
Physics, applications to      see "Applications"
Picard      193 194 206
Pockels      207
Poincare      207
poisson      186
Poisson's equation      186
Price      206
Reduction of equations to equivalent system      189
Relation between integrals      111
Relation between integrals and coefficients      199
Removal of second term      115
Riccati      105 106
Riccati's equation      105 106
Riemann      203 206
Schlesinger      207
Series, equation of hypergeometric      105 107
Series, integration in      101
Serret      206
Smith, C.      150 153 160
Smith, D.E.      202
Solutions      2 6 see
Spherical harmonics      183 184
Standard forms      159—165
Stegemann      205
Summary      38 48
Symbol D      67 68
Symbolic function $\frac{1}{f(D)}$      70
Symbolic functions $f(\theta)$, $\frac{1}{f(\theta)}$      86
Symbolic functions f(D, D'), $\frac{1}{f(D, D^{'})}$      174 176
Tac-locus      45 48 49
Taylor      40
Theories, modern      202
Thomson and Tait      183 185 186
Todhunter      106 183
Trajectories      55—57
Transformations      see "Equations"
Weierstrass      193 203
Williamson      4 52 149 183 184
Works on differential equations      205
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте