|
|
Авторизация |
|
|
Поиск по указателям |
|
|
|
|
|
|
|
|
|
|
Murray D.A. — Introductory Course In Differential Equations: For Students In Classical And Engineering Colleges |
|
|
Предметный указатель |
airy 205
Aldis 150 153
Applications to geometry 50—58 121 134 140 141 158
Applications to mechanics 58 122 144
Applications to physics 62 122 120 144 145
Auxiliary equation 65—67 175
Bedell 145
bernoulli 28
Bessel's equation 105 106
Bessell 105 106
Bocher 207
Boole 23 66 206
Boussinesq 206
Briot and Bouquet 193 194 203
Brooks 204
Byerly 105 106 169 184 205
Cajori 202
Cauchy 193 194 203
Cayley 40 48
Characteristic 151
Charpit 166
Charpit, method of 166
Chrystal 49
Clairaut 36 40 44
Clairaut's equation 36 44
Complementary function 63 174 179
Condition that equation be exact 18 92 197
Constants of integration 2 149 194 195
Craig 202 203 204 207
Criterion for independence of, constants 195
Criterion for independence of, integrals 197
Criterion of integrability 136 138 200
Cuspidal Locus 47
D'Alembert 146 173
De Martres 206
De Morgan 205
Derivation, of ordinary equations 4
Derivation, of partial equations 146 148
Discriminant 40
du Bois-Reymond 206
Duhamel 206
Edwards 4 5 48 52 54 149 183 184 205
Emtage 126 183 185
Envelope 41—44 150
Equation of cuspidal locus 47—49
Equation of envelope 42
Equation of tac-locus 45 48 49
Equation, auxiliary 65—67 175
Equation, Clairaut's 36 44
Equation, decomposable 31
Equation, definitions 1 17 92 146
Equation, derivation of 4 146 148
Equation, geometrical meaning 8—10 134 140 142 158
Equation, Laplace's 182
Equation, Legendre's 90 105
Equation, linear, partial 153—158 173
Equation, of nodal locus 45 48 49
Equation, partial of first order 149—169
Equation, partial, linear 153—158 169—187
Equation, partial, linear homogeneous 174—178
Equation, partial, linear non-homogeneous 179—181
Equation, partial, non-linear, integrals of 149—153
Equation, Poisson's 186
Equation, single non-integrable 142
Equations of hypergeometric series 105 107
Equations of second order 109—119
Equations, Bessel's 105 106
Equations, exact 17—19 92—94 197
Equations, homogeneous 15 35 82—84 90 138 174
Equations, invariants of 204
Equations, linear, ordinary 26 28 63 64 70 82—84 90 101 128
Equations, linear, simultaneous 128—133
Equations, Monge's 171
Equations, non-homogeneous 16 179
Equations, not decomposable 32
Equations, partial, definition, derivation 2 146 148
Equations, partial, of second and higher orders 169—187
Equations, Reduction to equivalent system 189
Equations, Riccati's 105 106
Equations, simultaneous 128—134
Equations, single integrable 136 138 200
Equations, transformation of 28 90 114 115 117 182
Equations, works on 205—207
Euler 64 107 146
Existence theorem 190
Factors, integrating 21—26
Fiske 193
Forsyth 48 69 80 86 94 101 106 107 111 116 138 159 168 172 202 205 206
Fuchs 203
Galois 204
Gauss 107 202
Geometrical meaning 8—10 134 140 142 158
Geometry see "Application"
Gilbert 193
Glaisher 48 106
Goursat 207
gray 106
| Halphen 204 205
Heffter 207
hilbert 190 194
Hill 49
Homogeneous see "Equation"
Houeel 206
Hymers 206
Hypergeometric series, equation of 105 107
Integrability, criterion of 136 138 200
Integral of linear partial equations 153 see
Integral, general 150 see
Integral, particular 6 64 73—80 87—90 149 176 180 see
Integral, singular 150 see
Integrals and coefficients 199 see
Integrals of simultaneous equations 133 see
Integrals, complete 64 149 see
Integrals, first 94 see
Integrals, relation between 111 see
Integrating factors 21—26
Integration, constants of see "Constants"
Invariants 204
Johnson 25 48 80 105 106 107 111 138 149 168 176 180 205 206
JORDAN 206
Klein 207
Koenigsberger 193 206
Kowalevsky 194
Lagrange 40 114 151 154 155 166
Lagrange's Solution 154 155
Lagrangean lines 155
Laguerre 204
Lamb 184
Laplace 105 182 184
Laplace's equation 182
laurent 206
legendre 90 105 184
Legendre's equation 105
Leibniz 27 40
Lie 202 204 207
Liouville 200
Lipschitz 193
Locus 8 42 45 47—49 141 151
Mansion 193 207
Mathews 106 203 207
McMahon 54 65 196 197
Mechanics, applications to see "Applications"
Meray 193
Merriman 126 127
Merriman and Woodward 54 127 176 202
Modern theories 202
Moigno 25 193 206
Monge 171
Monge's equations, method 171
Newton 27
Nodal Locus 45 48 49
Osborne 205
Page 204 207
Painleve 206 207
Particular integrals see "Integral"
Peirce 183 186
Physics, applications to see "Applications"
Picard 193 194 206
Pockels 207
Poincare 207
poisson 186
Poisson's equation 186
Price 206
Reduction of equations to equivalent system 189
Relation between integrals 111
Relation between integrals and coefficients 199
Removal of second term 115
Riccati 105 106
Riccati's equation 105 106
Riemann 203 206
Schlesinger 207
Series, equation of hypergeometric 105 107
Series, integration in 101
Serret 206
Smith, C. 150 153 160
Smith, D.E. 202
Solutions 2 6 see
Spherical harmonics 183 184
Standard forms 159—165
Stegemann 205
Summary 38 48
Symbol D 67 68
Symbolic function 70
Symbolic functions , 86
Symbolic functions f(D, D'), 174 176
Tac-locus 45 48 49
Taylor 40
Theories, modern 202
Thomson and Tait 183 185 186
Todhunter 106 183
Trajectories 55—57
Transformations see "Equations"
Weierstrass 193 203
Williamson 4 52 149 183 184
Works on differential equations 205
|
|
|
Реклама |
|
|
|