Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Arscott F.M. — Periodic Differential Equations: An Introduction to Mathieu, Lame, and Allied Functions
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Periodic Differential Equations: An Introduction to Mathieu, Lame, and Allied Functions
Àâòîð: Arscott F.M.
Àííîòàöèÿ: Of recent years, the two subjects of special functions and ordinary linear differential equations have (in this country at least) lain somewhat in the penumbra of a partial eclipse. Many mathematicians, not without reason, have come to regard the former as little more than a haphazard collection of ugly and unmemorable formulae, while attention in the latter has been directed mostly to existence-theorems and similar results for equations of general type. Only rarely does one find mention,at post-graduate level, of any problems in connection with the process of actually solving such equations. The electronic computer may perhaps be partly to blame for this, since the impression prevails in many quarters that almost any differential equation problem can be merely "put on the machine", so that finding an analytic solutionis largely a waste of time. This, however, is only a small part of the truth, for at the higher levels there are generally so many parameters or boundary conditions involved that numerical solutions, even if practicable, give no real idea of the properties of the equation. Moreover, any analyst of sensibility will feel that to fall back on numerical techniques savours somewhat of breaking a door with a hammer when one could, with a little trouble, find the key.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1964
Êîëè÷åñòâî ñòðàíèö: 281
Äîáàâëåíà â êàòàëîã: 28.03.2010
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
-, -functions see "Mathieu functions of integral order"
-, -functions see "Mathieu functions of fractional order"
-function 203—204 see
-functions see "Lame functions of the second kind"
and curves 128—129
, -functions 92 137
, -functions 90—92 135—137
, -functions 131—132 134—137 139—140
- functions 136—137
-, -functions see "Mathieu functions of integral order"
-, -functions see "Mathieu functions of fractional order"
-functions 174—176 187—190 see
-, -functions 186—187
Abel identity 28
Addition formulae for Mathieu functions 106
Associated Legendre equation 6 25 164—165
Associated Mathieu equation 2 14 27 153 182—185
Associated Mathieu functions 182—185
Asymptotic expansions for characteristic values 112—118
Asymptotic expansions for general Mathieu functions 139
Asymptotic expansions for Ince polynomials 151
Asymptotic expansions for Lame characteristic values 236
Asymptotic expansions for Mathieu functions 88 Chap.
Asymptotic expansions for spheroidal wave functions 186
Basically-periodic functions 31
Basically-periodic functions, solutions of Mathieu's equation 31 33—47 see
Bessel function product series for general Mathieu functions 138
Bessel function product series for Mathieu functions 98—99
Bessel function series for Associated Mathieu functions 185
Bessel function series for ellipsoidal wave functions 246—248
Bessel function series for Mathieu functions 86—88 89 135—136 138
Bessel function series for spheroidal wave functions 172—176 178
Bessel's equation, in wave problems 4 6
Bouwkamp 177 182
Brillouin 129 143
Burgess 72
Campbell 69 70 130—131 132 134 142 145 178 181 182 185
ceh-function 58
cel-, cdel-functions see "Ellipsoidal wave functions"
cer-, cei-functions 104
ceu-function 137
Characteristic equation for Mathieu's equation 43 62 64
Characteristic exponent of Hill's equation 142—143 149
Characteristic exponent of Mathieu's equation 49 50 131
Characteristic exponent of spheroidal wave equation 161—165 169
Characteristic values for ellipsoidal wave functions 239
Characteristic values for Mathieu functions 10 43—46 62—70
Coexistence problem for Hill's equation 144
Coexistence problem for Mathieu's equation 34—37
Continued fractions, use in constructing Mathieu functions 61—64 67
del-function see "Ellipsoidal wave functions"
Doubly-periodic equations 51
Dougall 79 99 100
Ec-, Es-functions 203 227 231
Eigenvalues see "Characteristic values"
el-functions see "Ellipsoidal wave functions"
Ellipsoidal coordinates 16—19 20 228—230
Ellipsoidal harmonics 25 214—218 228—230
Ellipsoidal wave equation 2 19 25 Chap.
Ellipsoidal wave functions of second and third kinds 248—250
Ellipsoidal wave functions, Bessel function series for 246—248
Ellipsoidal wave functions, Fourier — Jacobi series for 250
Ellipsoidal wave functions, integral relations 241—243
Ellipsoidal wave functions, main properties 238—241
Ellipsoidal wave functions, orthogonality 241
Ellipsoidal wave functions, perturbation series for 243—247
Ellipsoidal wave functions, power series for 250
Ellipsoidal wave functions, transformation formulae 250
Ellipsoidal wave functions, zeros 243
Elliptic coordinates 8 10 11 24
Elliptic membrane 10 150
Elliptic wave 84 104
Erdelyi 107 133 194 203 204 227—228
fe-, Fe-functions see "Mathieu functions of integral order"
fek-, Fek-functions see "Mathieu functions of the third kind"
fey-, Fey-functions see "Mathieu functions of the second kind"
fl-function 249
Flammer 182
Floquet's theorem 29—31 48 194
Fourier — Jacobi series 220—222 227—228 250
ge-, ge-functions see "Mathieu functions of integral order"
gek-, gey-functions see "Mathieu functions of the third kind"
gey-, gey-functions see "Mathieu functions of the second kind"
Goldstein 53—54 59 64 101 239
Halphen 213
Haupt 151
Heine 59
Heine, notation for Lame polynomials 202—204
hermite 16 194
Heun-type equations 231
Hill's equation 1 2 15—16 27 Chap. 190
Hill's equation with three terms (Whittaker — Hill equation) 2 16 23 43 141 144—146 150—151 238
Hill's method for determining stability 124—126 142—143
hl-function 249
Horn — Jeffreys technique 111 114—118
Humbert 145
Ince 2 34 47 74 101 104 144—145 182 185 194 203 227—228 231 232
Ince polynomials 148 149—152
Ince's equation (Whittaker — Hill equation) 145—152
Ince's theorem 34—37 65 77 125
Infinite determinant form of characteristic equation 64 67
Integral relations for ellipsoidal wave functions 241—243
Integral relations for Ince functions 150
Integral relations for Lame functions 211—217
Integral relations for Mathieu functions 40—42 79—84 85—86
Integral relations for spheroidal wave functions 42 180—181 184 188
Kelvin 59
Khabaza 231 236
Klotter and Kotowski 144
Lame functions (transcendental) 194 225—228
Lame functions (transcendental) of half-integral order 232
Lame functions (transcendental) of the second kind 223—225 230
Lame functions (transcendental) with single period 225—228 232
Lame polynomials Chap. IX 239 246—248
Lame polynomials in potential theory 228—230
Lame polynomials, asymptotic formulae 236
Lame polynomials, expansion as series of 222—223
Lame polynomials, integral relations for 211—214
Lame polynomials, Legendre function series for 218—220
Lame polynomials, normalization 208—209
Lame polynomials, orthogonality 206—208
Lame polynomials, perturbation series for 231
Lame polynomials, tables 230—231
Lame polynomials, Tchebycheff polynomial series for 218—222
Lame polynomials, transformation of 209—211
Lame polynomials, zeros of 197—200 202—204 210—211 227 231 232—233
Lamp's equation 2 9 24—25 Chap. 237—238
Lamp's equation, algebraic forms 192—193
Lamp's equation, trigonometric form 193
Laplace's equation 14 19 191 213 228—230
Latent roots of matrices 20—22
Leitner and Spence 182
Lindemann — Stieltjes method for Mathieu's equation 49
Magnus 143—145 152
Malurkar 242
Markovic's proof of Ince's theorem 34—37
Mathieu 67
Mathieu function series 73—74 78 84—85 103
Mathieu functions of fractional order 133—134
Mathieu functions of integral order 51
Mathieu functions of second kind 37—38 70—72 76—77 89—96 98
Mathieu functions of third kind 91—98 136—137
Mathieu functions, addition formulae 106
Mathieu functions, Bessel function product series for 76 98—101
Mathieu functions, Bessel function series for 75—76 86—88 89—90
Mathieu functions, elementary relations 55—57
Mathieu functions, integral equations for 41—42 79—84 86 96—98
Mathieu functions, integral relations for 40 85—86 96—98
Mathieu functions, normalization 53—54 64 67 71
Mathieu functions, notation 52
Mathieu functions, orthogonality 57—58
Mathieu functions, perturbation method for 67—70 76—77
Mathieu functions, relations between different orders 103—104
Mathieu functions, tables 101
Mathieu functions, trigonometric series for 54—55 59—67
Mathieu functions, zeros of 47 111—114 120
Mathieu's equation 2 9 14 15 167—168
Mathieu's equation, algebraic form 11 47—49 72—73 74 78
Mathieu's equation, general theory Chap. II
Mathieu's general equation Chap. VI
Mathieu's general equation, notation for solutions 130—134
Mathieu's general equation, stable solutions see "Mathieu functions of fractional order"
Mathieu's general equation, unstable solutions 134—135
Matrices (notation for) 21
McLachlan 9 54 64—65 82—83 129 132—134 137
Meissner equation 151
Meixner 44 69—70 74 92 106 119 128 136—137 169—170 176 179 181
Modified Mathieu equation 24 26 59
Modified Mathieu functions 58—59
Modified Mathieu functions, asymptotic behaviour 88
Moeglich 239 241 248
National Physical Laboratory 231
Ne-functions 92—98 137
Orthogonality of ellipsoidal wave functions 241
Orthogonality of Ince functions 149 151
Orthogonality of Lame polynomials 206—208
Orthogonality of Mathieu functions 39—40 50
Orthogonality of spheroidal wave functions 179 187 189
Oscillation 22
Paraboloidal coordinates 23
Periodic function (definition) 7
Periodicity equation 31—33 49 121
Periodicity exponent 31—33 49 121
Periodicity factor 31—33 49
Perron's rule 65—66 73 226—227
Perturbation method for ellipsoidal wave functions 243—246
Perturbation method for Ince functions 149—150
Perturbation method for Mathieu functions 67—69 138
Poincare 128—129
Ps-, Ps-functions 169—170 188—190 see
Pseudo-periodic solutions of doubly-periodic equations 51
Pseudo-periodic solutions of Mathieu's equation 31—34 49 127 138
Pseudo-periodic solutions of systems of equations 50
Qs-, Qs-functions 169—172 171—175 see
Roper 231
Schaefke 44 69—70 74 92 106 128 131 136—137 169—170
seh-function 58
sel-, scel-, sdel-, scdel-functions see "Ellipsoidal wave functions"
Separation constant 3
Separation method of 1—2 6 9 13 18 23
seu-function 137
Shenitzer 143
Singularities of differential equations 1
Spherical Bessel functions 173
Spherical harmonics 25
Spherical harmonics, relations with ellipsoidal harmonics 214—218
Sphero-conal coordinates 24—25
Spheroidal coordinates 12 15 153 189
Spheroidal wave equation 2 12 27 Chap. 238
Spheroidal wave functions 159 163 176—181 186
Spheroidal wave functions, connexion with Associated Mathieu functions 182—183
Stability diagram for Mathieu's equation 122—124
Stability of solutions of periodic equations 50
Stable solutions of Mathieu's equation 121—122
Stable zone for Mathieu's equation 120
Stationary phase, method of 120
Stieltjes's theorem on Lame polynomials 197—198 233—234
Stokes phenomenon 110
Stratton et al. 181—182
Strutt 144
Sturm oscillation theorem 22—23
Sturm — Liouville expansions 74
Systems of periodic differential equations 50
Titchmarsh 74
Transcendental Ince functions 149
Transcendental Lame functions 194 226
Transformation of wave equation 13
uel-functions see "Ellipsoidal wave functions"
Unstable solutions of Mathieu's equation 121—122
Urwin 151
Von Koppenfels 83
Wave equation in 2-dimensions 2 7
Wave equation in 3-dimensions 6 7 237—238
Wave equation in elliptic coordinates 8—10 59
Whittaker 53 145
Whittaker — Hill equation 16 23 43 142 144—146 150 238
Whittaker's -method for Hill's equation 143
Whittaker's -method for Mathieu functions 129 137
Winkler 143—145 152
Zeros of ellipsoidal wave functions 243
Zeros of Ince polynomials 148 149 150
Zeros of Lame functions 197—200 202—204 210—211 227—228 231 233
Zeros of Mathieu functions 10 47 54 74 111—114 120
Zeros of spheroidal wave functions 186
Zeros, Sturm's theorem on 22—23
Ðåêëàìà