Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Weintraub S. — Differential Forms. A complement to vector calculus | |
Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 378 |
Bartle R.G. — The Elements of Real Analysis | 271 |
Grinstead C.M., Snell J.L. — Introduction to Probability | 428 |
Rudin W. — Principles of Mathematical Analysis | 297 |
Apostol T.M. — Calculus (vol 2) | 445 |
Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 1) | 1744 |
Evans L.C. — Partial Differential Equations | 20 |
Oprea J. — Differential Geometry and Its Applications | 146 |
Kodaira K. — Complex manifolds and deformation of complex structures | 9 |
Goldberg S.I. — Curvature and homology | 67 |
Garnett J.B. — Bounded Analytic Functions | 11 |
Roberts A.W., Varberg D.E. — Convex Functions | 254 |
Bochner S., Martin W.T. — Several Complex Variables | 103, 162 |
Rudin W. — Real and Complex Analysis | 223 |
Farkas H., Kra I. — Riemann Surfaces | 24, 151 |
Miranda R. — Graduate studies in mathematics (vol.5). Algebraic curves and Riemann surfaces | 27, 114 |
Lee J.M. — Riemannian Manifolds: an Introduction to Curvature | 44 |
Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 2) | 1744 |
Conway J.B. — Functions of One Complex Variable | 41, 252 |
Lee J.M. — Introduction to Smooth Manifolds | 267 |
Weinberger H.F. — First course in partial defferential equations with complex variables and transform methods | 52 |
Hormander L. — Notions of Convexity | 116 |
Ward R.S., Wells R.O. — Twistor geometry and field theory | 277, 278, 432 |
Kundu P.K., Cohen I.R. — Fluid mechanics | 151 |
Ahlfors L.V. — Complex analysis | 25, 160—172, 233—243 |
Williamson R.E., Crowell R.H., Trotter H.F. — Calculus of vector functions | 384 |
Athreya K.B., Ney P.E. — Branching Processes | 66, 93 98, 99, 100 |
McDuff D., Salamon D. — J-Holomorphic Curves and Quantum Cohomology | 185 |
Bryant R., Griffiths P., Grossman D. — Exterior differential systems and Euler-Lagrange PDEs | 29 |
Winkler G. — Stochastic Integrals | 9.3.1 |
Davies E. — Spectral Theory and Differential Operators | 134 |
Skorokhod A.V., Prokhorov Y.V. (Ed) — Basic Principles and Applications of Probability Theory | 226 |
Thorisson H. — Coupling, Stationarity, and Regeneration | 195 |
Rumely R.S. — Capacity Theory on Algebraic Curves | 63, 73 |
Halmos P.R. — Hilbert Space Problem Book | 38 |
Garnett J.B. — Bounded Analytic Functions | 10 |
Sagan H. — Advanced Calculus of Real-Valued Functions of a Real Variable and Vector-Valued Functions of a Vector Variable | (564) |
Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 404 |
Kohonen T. — Self-organizing maps | 108 |
Debnath L. — Linear Partial Differential Equations for Scientists and Engineers | 5, 330 |
Jacobsen M. — Point Process Theory and Applications: Marked Point and Piecewise Deterministic Processes | 211 |
Chu C.-H., Lau A.T.-M. — Harmonic Functions on Groups and Fourier Algebras | 8 |
Strauss W.A. — Partial Differential Equations: An Introduction | 16 |
Hansen G.A., Zardecki A., Douglass R.A. — Mesh Enhancement: Selected Elliptic Methods, Foundations and Applications | 114, 295 |
Krantz S.G. — Function Theory of Several Complex Variables | 35 |
Ablowitz M.J., Fokas A.S. — Complex Variables: Introduction and Applications | 39 |
Hahn L.- Sh., Epstein B. — Classical Complex Analysis | 80, 97, 244, 363 |
Petersen P. — Riemannian Geometry | 281 |
Chung K.L., Walsh J.B. — Markov Processes, Brownian Motion, and Time Symmetry | 156ff , 287, 379, 412 |
Bollobas B. — Modern Graph Theory | 301 |
Sokolnikoff I.S. — Mathematical Theory of Elasticity | 79 |
Karlin S., Taylor H.E. — A Second Course in Stochastic Processes | see “Regular sequence” |
Shankar R. — Basic Training In Mathematics | 115 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1 | 685 |
Jost J., Simha R.T. — Compact Riemann Surfaces: An Introduction to Contemporary Mathematics | 22, 104, 109, 110 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 265, 535 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1 | 265 |
Shiryaev A., Peskir G. — Optimal Stopping and Free-Boundary Problems | 83 |
Lukes J., Maly J., Zajicek L. — Fine Topology Methods in Real Analysis and Potential Theory | 318, 327, 348, 350, 351 |
Heusler M., Goddard P. — Black Hole Uniqueness Theorems | 187 |
Rudin W. — Functional analysis | 163, 366 |
Kobayashi S., Nomizu K. — Foundations of Differential Geometry, Volume 2 | 339 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 3 | 685 |
Taylor J.C. — An Introduction to Measure and Probability | 231 |
Fukushima M. — Dirichlet forms and markov process | 9 |
Morita S. — Geometry of differential forms | 155 |
Rudin W. — Real and complex analysis | 232 |
Zauderer E. — Partial Differential Equations of Applied Mathematics | 485 |
Kuznetsov N., Mazya V., Vainberq B. — Linear Water Waves: A Mathematical Approach | 22, 24, 33, 43, 46, 47, 52, 53, 62, 67, 107, 124, 130, 138, 144, 148, 157, 177, 178, 253, 308, 312, 337, 338, 347, 357, 368, 380, 383, 392, 407, 424, 425, 460 |
Sokolnikoff I.S. — Mathematics of Physics and Modern Engineering | 468, 560, 585 |
Pedregal P. — Introduction to Optimization | 152 |
Morita Sh. — Geometry of Differential Forms | 155 |
Greenberg M.D. — Advanced engineering mathematics | 1145 |
Gong S., Gong Y. — Concise Complex Analysis | 15 |
Sheil-Small T. — Complex polynomials | 126 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 2 | 685 |
De Felice F., Clarke C.J.S. — Relativity on curved manifolds | 315, 390 |
Havin V.P., Nikolski N.K. (eds.) — Linear and Complex Analysis Problem Book 3 (part 2) | 7.10, 10.3, 10.10, 10.20, 12.0, 12.8, 12.14, 12.15, 12.23, 14.17 |
Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds | 102 |
Love A.E.H. — A Treatise on the Mathematical Theory of Elasticity | 135, 230 |
Mercier A. — Analytical and canonical formalism in physics | 135 |
Fomenko À.Ò., Mishehenko A.S. — A Short Course in Differential Geometry and Topology | 146 |
Bak J., Newman D.J. — Complex Analysis | 200 |
Abhyankar S.S. — Local Analytic Geometry | 59 |
Driscoll T.A., Trefethen L.N. — Schwarz-Christoffel Mapping | 87 |
Fine B., Rosenberger G. — Fundamental Theorem of Algebra | 45-46 |
Asmar N.H. — Partial Differential Equations with fourier series and boundary value problems | 106, 198, 622, 655 |
Corduneanu C., Gheorghiu N., Barbu V. — Almost Periodic Function | 128, 133 |
Wheeden R.L., Zygmund A. — Measure and integral. An introduction to real analysis | 151 |
Olver P.J., Shakiban C. — Applied linear. algebra | 369, 372 |
Kreyszig E. — Advanced engineering mathematics | 465, 622, 772 |
Ding H., Chen W., Zhang L. — Elasticity of Transversely Isotropic Materials | 46, 95, 123, 147, 148, 195, 378, 379 |
Davies B. — Integral Transforms and Their Applications | 9, 133, 246, 258 |
Mattheij R.M.M. — Partial differential equations: modeling, analysis, computation | 160 |
Oprea J. — Differential Geometry and Its Applications | 179 |
Kigami J. — Analysis on Fractals | 45, 52, 73, 75, 143 |
Kral J. — Integral Operators in Potential Theory (Lecture Notes in Mathematics) | 1 |
Attouch H., Buttazzo G., Michaille G. — Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization | 7 |
Petersen K.E. — Ergodic theory | 108 |
Margenau H., Murphy G.M. — The mathematics of physics and chemistry | 220 |
Farin G. — Curves and surfaces for computer aided geometric design | 9 |
Carmeli M. — Classical Fields: General Gravity and Gauge Theory | 175, 275, 370 |
Rao M.M., Swift R.J. — Probability Theory With Applications | 217 |
Fordy A.P., Wood J.C. (eds.) — Harmonic maps and integrable systems | 30 |
C. Caratheodory, F. Steinhardt — Theory of Functions of a Complex Variable. 2 Volumes | 150 |
Sokolnikoff I.S. — Mathematical Theory of Elasticity | 79 |
Lelong P., Gruman L. — Entire functions of several complex variables | 230 |
Browder A. — Mathematical Analysis: An Introduction | 314, 318 |
Thron W. — Introduction to the theory of functions of a complex variable | 184 |
Morita S. — Geometry of Differential Forms | 155 |
Goffman C. — Calculus of several variables | 171 |
Stavroulakis I.P., Tersian S.A. — Partial Differential Equations: An Introduction with Mathematica and Maple | 169 |
Novikov S.P., Fomenko A.T. — Basic elements of differential geometry and topology | 312 |
Hermann R. — Differential geometry and the calculus of variations | 390, 393 |
Shilov G.E. — An introduction to the theory of linear spaces | 298 |
Rauch J. — Partial differential equations | 17, 81, 157, 175, 176, 238—239 |
Semadini Z. — Banach Spaces of Continuous Functions. Vol. 1 | 235 |
Abramovich Y.A., Aliprantis C.D. — An Invitation to Operator Theory | 236 |
Synge J.L. — Relativity: The general theory | 311, 313, 341, 369ff |
Vladimirov V. S. — Equations of mathematical physics | 278 |
Belotserkovsky S.M., Lifanov I.K. — Method of Discrete Vortices | 327,388,393 |
Borodich F. — Theory of Elasticity | 232, 273 |
Gelbaum B.R. — Problems in Real and Complex Analysis | 13.1. 124 |
Schulz F., Dold A. (Ed), Eckmann B. (Ed) — Regularity Theory for Quasilinear Elliptic Systems and Monge-Ampere Equations in Two Dimensions | 51, 52 |
Berndt J., Tricerri F., Vanhecke L. — Generalized Heisenberg Groups and Damek-Ricci Harmonic Spaces | 11, 12 |
Krantz S.G. — Function theory of several complex variables | 35 |
Carroll R.W. — Mathematical physics | 20 |
Berndt J., Tricerri F., Vanhecke L. — Generalized Heisenberg Groups | 11, 12 |
Bhatia R. — Fourier Series (Mathematical Association of America Textbooks) | 19 |
Donoghue W.F. — Distributions and Fourier transforms | 43 |
Wolfgang K. H. Panofsky, Phillips Panofsky, Melba Panofsky — Classical Electricity and Magnetism | 7, 62 |
Anderssen R.S., de Hoog F.R., Lukas M.A. — The application and numerical solution of integral equations | 78 |
Lane S.M. — Mathematics, form and function | 180 |
Kuttler K. — Notes for Partial Differrential Equations | 113 |
Soardi P.M — Potential Theory On Infinite Networks | 19 |
Bear H.S. — A Primer of Lebesgue Integration | 81 |
Kanwal R.P. — Linear Integral Equations: Theory and Techniques | 95, 97, 102, 186, 262 |
Griffits D.J. — Introductions to electrodynamics | 111 |
Chung K.L., Walsh J.B — Markov Processes, Brownian Motion, and Time Symmetry | 156ff, 287, 379, 412 |
Hartshorne R. — Algebraic Geometry | 442 |
Maeda F.Y. — Dirichlet Integrals on Harmonic Spaces | 3 |
Blum E.K., Lototsky S.V. — Mathematics of Physics and Engineering | 157, 193 |
Wald R.M. — General Relativity | 53 |
Apostol T.M. — Calculus (Volume 2): Multi-Variable Calculus and Linear Algebra with Applications | 445 |
Zeidler E. — Oxford User's Guide to Mathematics | 502, 563 |
Morel J.-M., Solimini S. — Variational Models for Image Segmentation: with seven image processing experiments (Progress in Nonlinear Differential Equations and Their Applications) | 13.3 |
Fritzsche K., Grauert H. — From Holomorphic Functions To Complex Manifolds | 52 |
Blumenthal R.K., Getoor R.M. — Markov processes and potential theory | 187 |
John F. — Partial Differential Equations | 2, 97, 98, 109 |
Johnson W.C. — Mathematical and physical principles of engineering analysis | 307 |
Mattheij R.M. — Partial differential equations | 160 |
Kalton N., Saab E. — Interaction Between Functional Analysis, Harmonic Analysis, and Probability (Lecture Notes in Pure and Applied Mathematics) | 85, 91 |
Zorich V.A., Cooke R. — Mathematical analysis II | 286, 304 |
Cheney W. — Analysis for Applied Mathematics | 199 |
Zorich V. — Mathematical Analysis | 286, 304 |
Abramovich Y., Aliprantis C. — An Invitation to Operator Theory (Graduate Studies in Mathematics, V. 50) | 236 |
Bhatia R. — Matrix Analysis | 135 |
Davies B. — Integral Transforms and their Applications | 9, 133, 246, 258 |
Morrey C. — Multiple integrals in the calculus of variations | 40 |
Kline M. — Mathematical thought from ancient to modern times | 685 |
Morita S. — Geometry of Differential Forms (Translations of Mathematical Monographs, Vol. 201) | 155 |
Jorgensen P.E.T. — Analysis and Probability: Wavelets, Signals, Fractals | 9, 18, 21, 22, 43, 48—52, 55, 76, 86, 91, 92, 95, 100, 252 |