Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Karlin S., Taylor H.E. — A Second Course in Stochastic Processes
Karlin S., Taylor H.E. — A Second Course in Stochastic Processes



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: A Second Course in Stochastic Processes

Àâòîðû: Karlin S., Taylor H.E.

Àííîòàöèÿ:

This Second Course continues the development of the theory and applications of stochastic processes as promised in the preface of
A First Course. We emphasize a careful treatment of basic structures in stochastic processes in symbiosis with the analysis of natural classes of stochastic processes arising from the biological, physical, and social sciences.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 1st edition

Ãîä èçäàíèÿ: 1981

Êîëè÷åñòâî ñòðàíèö: 542

Äîáàâëåíà â êàòàëîã: 12.02.2008

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Absorbing barrier      16—18 19
Absorbing boundary      251
Absorbing state      24 29 155
Additive functional      254—255 308—313
Arcsine law      224—226 473
Attainable boundary      230
Attracting boundary      228 249
Backward equation for Brownian motion      217
Backward equation for for diffusion processes      214—216
Backward equation for for Kac functional      222—224
Backward equation for for Markov chain      143—144
Ballot problem      107 134—136
Bessel process      175—176 327 336
Bessel process, boundary behavior      238—239
Bessel process, spectral representation      338
Birth and death process      142
Boundary behavior, and infinitesimal operator      305—307
Boundary classifications      234 250
Boundary criteria      232—234
Branching process      383 384
Brownian bridge      268 269
Brownian motion      169—170 211 323 377 379 385 386 388 389 394
Brownian motion, absorbed      170 392
Brownian motion, and white noise      343
Brownian motion, arcsine law      224—226
Brownian motion, backward equation      217
Brownian motion, boundary behavior      228—229 230 236
Brownian motion, compounded      378
Brownian motion, conditioned process      267—272 388
Brownian motion, control problem      212
Brownian motion, geometric      175 359—360 380
Brownian motion, infinitesimal operator      289 297
Brownian motion, instantaneous return process      261
Brownian motion, n-dimensional      291—292 299 312—313 380 382 393
Brownian motion, radial process      335—336
Brownian motion, reflected      170 327 337 379 392
Brownian motion, resolvent      288
Brownian motion, spectral representation      337 393
Brownian motion, standard      197 205
Brownian motion, with drift      205
Busy period      513—519
Cash inventory model      211—212
Chapman — Kolmogorov equation      286
Compound Poisson process      426—440
Compound Poisson process, decomposition of      433—436
Compound Poisson process, sum of      430—431
Conditional diffusion process      261—272 387
Conditional diffusion process, boundary behavior      263—264
Conditional diffusion process, Green function      264—265
Conservative diffusion      161
Conservative process      143
Convergence to diffusions      168
Coupling      93
Differential operator      388
Diffusion coefficient      159
Drift coefficient      159
Dynamical systems      343—345
Dynkin condition      163 165
Dynkin formula      297—299 308—313
Dynkin formula, applications      299
Ehrenfest urn model      171
Elastic boundary      255—257
Empirical distribution      113—116 119—123
Entrance boundary      235 246 382
Entrance boundary, stationary distribution      241—242
Excessive function      see “Superregular sequence”
Exchangeable random variables      454 516
Exit boundary      233—234 246
Exit time      302—303
Feller property      291
Forward equation for diffusion processes      219
Forward equation for Markov chain      143 144
Fundamental matrix      24
Gene frequency model      177 206—208 361—362 381 387 390
Gene frequency model, boundary behavior      239—241
Gene frequency model, spectral representation      336—337
Gene frequency model, with mutation      177—179 180—183 208—211 239—241 265—266
Gene frequency model, with mutation and selection      222
Gene frequency model, with selection      180 184—188
Genetic recombination      272—284
Green function      198—202 287
Green function, and resolvent operator      293
Green function, for Brownian motion      205
Harmonic function      see “Regular sequence”
Hewitt — Savage 0—1 law      477
Hille — Yosida theorem      296
Hitting time      158 162 192 226
Hitting time of boundary      228 242—243
Infinitesimal generator      286
Infinitesimal matrix      145
Infinitesimal mean      159
Infinitesimal operator      195 287 294—295
Infinitesimal operator, and boundary behavior      305—307
Infinitesimal operator, as differential operator      303—305
Infinitesimal operator, domain of      307—308
Infinitesimal operator, Dynkin form      300—302
Infinitesimal parameters      159
Infinitesimal variance      159
Input distribution      489
Instantaneous return process      260—261
Instantaneous state      147
Interchangeable      108—113
Ito integral      346—347 356—357
Ito transformation formula      173 347—348 371—372 389
Ito transformation formula, applications      374—375
Jacobi diffusion      335
Jump boundary      258—260
Kac functional      222—224 313—316 393
Killing rate      204 313—316
Killing time      161 382
Killing time, example      272—284
Kolmogorov condition      465
Ladder index      95
Ladder random variable      464—465 480
Levy process      319 432—433
Lightning model      446
Local time      198 207 251—253 316—324
Local time, inverse of      317—318
Logistic equation      360—361
Markov time      149—150
Martingale      167 308—312 325—327 371 376—377 382
Martingale and stochastic integrals      352—355
Maximum random variable      451 463 483—484 486
Minimal process      148
Multiplicative functional      313—316
Mutation      see also “Gene frequency model”
Mutation in population      188—191
Natural boundary      235—236 246
Natural scale      196
Occupation time      252 452
Optimal allocation model      367—368
Optimal growth model      366—367
Optimal stopping      50—64 68—69
Option price model      365—366 389
Order statistics      100—107 124 125 129
Ornstein — Uhlenbeck process      170—173 183 345—346 379 380
Ornstein — Uhlenbeck process, backward equation      218
Ornstein — Uhlenbeck process, boundary behavior      237
Ornstein — Uhlenbeck process, in n dimensions      292
Ornstein — Uhlenbeck process, radial process      333—334
Ornstein — Uhlenbeck process, spectral representation      332—333
Ornstein — Uhlenbeck process, stationary distribution      221
Periodic class      6—10 78
Poisson point process      see also “Poisson process”
Poisson point process, spatial      436—440
Poisson process and uniform distribution      403 404
Poisson process in astronomy      404—405
Poisson process, spatial      398—403 441 443 445
Population growth model      188—191 354—355 358 378 382 383 390
Population growth model, boundary behavior      239
Population growth model, geometric      413—416
Population growth model, in space and time      416—419
Population growth model, spectral representation      334
Population growth model, two types      444
Population growth model, with age structure      419—426
Population growth model, with immigration      405—408
Population growth model, with mutation      408—413
Production and consumption model      363—365
Progressively measurable      369
Quasi-left continuity      163
Queue discipline      489
Queueing process      394
Queueing process, $E_k/M/1$      506—510
Queueing process, $G/M/^{\infty}$      522
Queueing process, $M/G/^{\infty}$      449 521 522
Queueing process, $M/M/^{\infty}$      519—520
Queueing process, embedded Markov chain      497—503
Queueing process, G/M/1      504—506
Queueing process, GI/G/1      524
Queueing process, GI/GI/1      492—496
Queueing process, GI/M/s      511—513
Queueing process, M/G/1      523
Queueing process, M/GI/1      497—503
Queueing process, M/M/l      490—492 519 520 524
Queueing process, M/M/s      519
Queueing process, notation      490
Queueing process, with balking      520—521
Quiz show      56—58
Radial Brownian motion      see “Bessel process”
Random time change      253—255
Random walk      25 26 67 82 97 98 99
Random walk, optimal stopping      58—59
Random walk, spectral representation for      10—23
Recurrence      72—76 83 153 155
Recurrence, criterion for      73
Recurrent class      9 23 35
Recurrent Markov chain      3—4 65 66
Recurrent Markov chain, criterion for      37—40 47 49
Recurrent state      34
Reflecting barrier      14—16
Reflecting boundary      251
Regular boundary      232—233
Regular diffusion      158
Regular sequence      44—45 83
Renewal Theorem      93—95
Renewal theory      482
Resolvent operator      287 292—294
Reversed process      42 69
Scale function      194 226
Scale measure      227
Semigroup theory      305
Semigroup theory for Markov processes      285—294
Service distribution      489
Shock model      429—430
Signal detection model      368
Spectral representation, for absorbed Brownian motion      393
Spectral representation, Jacobi diffusion      335
Spectral representation, Markov chain      5 23
Spectral representation, matrix      1—3
Spectral representation, Ornstein — Uhlenbeck process      332—333
Spectral representation, population growth model      334
Spectral representation, random walk      14—18
Speed density      195 197
Speed measure      195 227
Spitzer’s identity      460 472
Stable state      146
Standard process      162
Standard transition function      138
Stationary distribution      220—221 236 241—242 386
Stationary distribution, generalized      37 42—43
Sticky boundary      257—258
Stochastic differential equation, solution of      373—374
Stopping rule problems      see “Optimal stopping”
Stratonovich integral      346—347 351 353—354 356—358 390—391
Strength model      439—440
Strong Markov property      149—152
Subadditive function      139
Subregular sequence      44—45
Superregular functions, transient Markov chains      47
Superregular majorant      56 59—62
Superregular sequence      44—45 52—53 66
Taboo probabilities      31—32
Total positivity      167
Transience      75
Transient class      24
Transient Markov chain      67
Trap state      378
Unattainable boundary      230
Virtual waiting time      513—519
Warrant price model      see “Option price model”
White noise      342—343
Wong — Zakai integral      348—351
Wright — Fisher model      see “Gene frequency model”
wronskian      200
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå