Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Êîðìåí Ò., Ëåéçåðñîí ×., Ðèâåñò Ð. — Àëãîðèòìû: ïîñòðîåíèå è àíàëèç | 811 |
Heinbockel J.H. — Introduction to tensor calculus and continuum mechanics | 11 |
Keisler H.J. — Elementary calculus | 600 |
Grimaldi R.P. — Discrete and combinatorial mathematics. An introduction | 246—248, 271, 321 |
Borisenko A.I., Tarapov I.E. — Vector and Tensor Analysis with Applications | see “Vector product” |
Lipschutz Seymour — Schaum's Outline of Theory and Problems of Linear Algebra (Schaum's Outlines) | 49—50, 65—67 |
Olver P.J. — Equivalence, Invariants and Symmetry | 219 |
Oprea J. — Differential Geometry and Its Applications | 19—20 |
Bonet J., Wood R.D. — Nonlinear Continuum Mechanics for Finite Element Analysis | see “Vector product” |
Bilaniuk S. — A Problem Course in Mathematical Logic (vol. 1) | 79 |
Baker A. — Matrix Groups: An Introduction to Lie Group Theory | 68 |
Majid S. — Foundations of Quantum Group Theory | 19, 22, 214, 222, 227, 252, 282, 328, 346, 398, 491 |
Messer R. — Linear Algebra: Gateway to Mathematics | 288 |
Zienkiewicz O.C., Taylor L.R. — The finite element method (vol. 1, The basis) | 640 |
Pesic P. — Abel's Proof: An Essay on the Sources and Meaning of Mathematical Unsolvability | See Multiplication |
Meyer C.D. — Matrix analysis and applied linear algebra | 332, 339 |
Buss S.R. — 3-D computer graphics. A mathematical introduction with openGL | 5, 42, 300, 321, 322, 325 |
Lee J.M. — Introduction to Smooth Manifolds | 172 |
Millman R.S., Parker G.D. — Elements of Differential Geometry | 6 |
Becker A.A. — The Boundary Element Method in Engineering. A complete course | 16, 75, 107 |
Levine I.N. — Molecular Spectroscopy | 12 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry | 363 |
Rich B., Schmidt Ph. — Schaum's Outline of Elementary Algebra (Schaum's Outline Series) | 219 |
Sagan H. — Advanced Calculus of Real-Valued Functions of a Real Variable and Vector-Valued Functions of a Vector Variable | 503 |
Hatcher A. — Algebraic Topology | 210, 218, 223, 268, 277, 278 |
Coffin D. — Algebra and Pre-Calculus on the HP 48G/GX | 174—175, 187—188, 190, 196—198, 203, 205, 208, 211 |
Coffin D. — Calculus on the HP-48G/GX | 224—225, 256 |
Brown K.S. — Cohomology of Groups | 109 |
Cooper J. — A Matlab Companion for Multivariable Calculus | 35 |
Thompson J.E. — Algebra for the Practical Man | 255 |
Kono A., Tamaki D. — Generalized Cohomology | 40 |
Shankar R. — Basic Training In Mathematics | 153 |
McMano D., Topa D.M. — A Beginner's Guide to Mathematica | 174 |
Ratcliffe J.G. — Foundations of Hyperbolic Manifolds | 35 |
Hall B.C. — Lie Groups, Lie Algebras, and Representations: An Elementary Understanding | 53, 60 |
Lounesto P., Hitchin N.J. (Ed), Cassels J.W. (Ed) — Clifford Algebras and Spinors | 37, 93 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 147 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1 | 147 |
Sipser M. — Introduction to the theory of computation | 6 |
Hein J.L. — Discrete Mathematics | 33 |
Fripp A., Fripp J., Fripp M. — Just-in-Time Math for Engineers | 265, 272—275 |
Arvo J. — Graphics gems (vol. 2) | 333—334 |
Antman S.S. — Nonlinear Problems of Elasticity | 4, 371 |
Elberly D.H., Shoemake K. — Game Physics | 606—609 |
Sokolnikoff I.S. — Higher Mathematics for Engineers and Physicists | 400 |
Singer I.M., Thorpe J.A. — Lecture Notes on Elementary Topology and Geometry | 112 |
Carmo M.P. — Differential geometry of curves and surfaces | 12 |
Lebedev L.P., Cloud M.J. — Tensor Analysis | 20 |
Staffans O. — Well-Posed Linear Systems | 56 |
Sokolnikoff I.S. — Mathematics of Physics and Modern Engineering | 291 |
Fishbane P.M. — Physics For Scientists and Engineers with Modern Physics | 283—284 |
Featherstone R. — Rigid Body Dynamics Algorithms | 23—25, 243 |
Gallier J. — Geometric Methods and Applications: For Computer Science and Engineering | 240 |
Greenberg M.D. — Advanced engineering mathematics | 685 |
O'Neill B. — Elementary differential geometry | 47—49, 107, 110 |
Shirley P., Morley R.K. — Realistic Ray Tracing | 4 |
Strichartz R.S. — The way of analysis | 435 |
Feynman R.P., Leighton R.B., Sands M. — The Feynman lectures on physics (vol.2) | II-2-8, II-31-8 |
Dubrovin B.A., Fomenko A.T., Novikov S.P. — Modern Geometry - Methods and Applications. Part 1. The Geometry of Surfaces, Transformation Groups and Fields | 43 |
Hein J.L. — Discrete Structures, Logic, and Computability | 32 |
Munkres J.R. — Analysis on manifolds | 183, 313 |
Nayfeh M.H., Brussel M.K. — Electricity and Magnetism | 5 |
Guggenheimer H.W. — Differential Geometry | see “Vector product” |
Berger M., Cole M. (translator) — Geometry I (Universitext) | 8.11, 8.11.8, 8.12.9, 15.6.6 |
Freund L.B. — Dynamic Fracture Mechanics | 14 |
Pope S.B. — Turbulent Flows | 654-659, 660 |
Fenn R. — Geometry | 142 |
Desloge E.A. — Classical Mechanics. Volume 1 | 425 |
Miller W. — Symmetry Groups and Their Applications | 102, 376 |
Farin G., Hansford D. — Practical Linear Algebra: A Geometry Toolbox | 168, 177 |
Selvadurai A.P.S. — Partial Differential Equations in Mechanics 1: Fundamentals, Laplace's Equation, Diffusion Equation, Wave Equation | 2 |
Barrels R.H., Beatty J.C. — An Introduction to Splines for use in Computer Graphics and Geometric Modeling | 302 |
Greenberg M.J., Harper J.R. — Algebraic Topology | 259 |
Olver P.J., Shakiban C. — Applied linear. algebra | 140, 221, 353, 401, 484 |
Hein J.L. — Theory of Computation: An Introduction | 16 |
Kreyszig E. — Advanced engineering mathematics | 377 |
Siegel W. — Fields | IIA1 |
Oprea J. — Differential Geometry and Its Applications | 18 |
Paeth A.W. (ed.) — Graphics gems (volume 5) | II.333-II.334 |
McQuistan R.B. — Scalar and Vector Fields: a Physical Interpretation | 34 |
Margenau H., Murphy G.M. — The mathematics of physics and chemistry | 143 |
Arya A.P. — Introduction to Classical Mechanics | 147, 328 |
Carl D. Meyer — Matrix Analysis and Applied Linear Algebra Book and Solutions Manual | 332, 339 |
Greub W.H. — Linear Algebra | 194 |
Nicholson W.K. — Linear Algebra with Applications | 168 |
Browder A. — Mathematical Analysis: An Introduction | 289 |
Ohanian H.C. — Classical Electrodynamics | 4 |
Kreyszig E. — Introductory functional analysis with applications | 85 |
Harman T.L., Dabney J.B., Richert N.J. — Advanced Engineering Mathematicas with MATLAB | 67 |
Hefferon J. — Linear algebra | 298 |
Riley, Hobson — Mathematical Methods for Physics and Engineering | see "Vector product" |
Massey W.S. — A basic course in algebraic topology | 325, 330 |
Spanier E.H. — Algebraic Topology | 231—232, 234—235 |
Myler H.R., Weeks A.R. — Computer imaging recipes in C | 41 |
Davis H. F., Snider A. D. — Introduction to Vector Analysis | 32 (see also Vector product) |
Nelson E.W., Best C.L., McLean W.G. — Schaum's outline of theory and problems of engineering mechanics. Statics and dynamics | 5, 13—14 |
Audin M. — Geometry | see "Vector product" |
Audin M. — Geometry | see "Vector product" |
Greub W.H. — Linear Algebra | 194 |
Copeland A.H. — Geometry, algebra, and trigonometry by vector methods | 113 |
Porteous I.R. — Clifford Algebras and the Classical Groups | 60 |
Siegel W. — Fields | IIA1 |
Lounesto P. — Clifford algebras and spinors | 37, 93 |
Weinreich G. — Geometrical vectors | 1, 3, 26—31, 49, 83—84, 109 |
Gries D. — A Logical Approach to Discrete Math | 266 |
Dorst L., Fontijne D., Mann S. — Geometric algebra for computer science | 86—89 |
Hirsch M.W., Smale S. — Differential Equations, Dynamical Systems, and Linear Algebra | 20 |
Hobbie R., Roth B. — Intermediate Physics for Medicine and Biology, | 5 |
Shreiner D., Woo M., Neider J. — OpenGL programming guide | 131, 769 |
Dunford N., Schwartz J., Bade W.G. — Linear operators. Part 2 | see "Product" |
Barry Steven, Davis Stephen — Essential Mathematical Skills: For Students of Engineering, Science and Applied Mathematics | 82 |
Hildebrand F.B. — Advanced Calculus for Applications | 266 |
Griffits D.J. — Introductions to electrodynamics | 3, 6 |
Strang G. — Introduction to Applied Mathematics | 204, 510 |
Richter-Gebert J. — Realization Spaces of Polytopes, Vol. 164 | 13 |
Blum E.K., Lototsky S.V. — Mathematics of Physics and Engineering | 17 |
Grimaldi R.P., Rothman D.J. — Discrete and Combinatorial Mathematics: An Applied Introduction | 152, 154, 248, 250, 270, 314 |
Mcdonald B.R. — Linear algebra over commutative rings | 239 |
Hassani S. — Mathematical Methods: for Students of Physics and Related Fields | 7, 28—31 |
Spivak M. — Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus | 84 |
Greenberg M.J., Harper J.R. — Algebraic topology: a first course | 259 |
Higham D.J., Higham N.J. — MATLAB guide | 56 |
Akenine-Möller T. — Real-Time Rendering | 45n, 722—723 |
Dunford N., Schwartz J.T., Bade W.G. — Linear Operators, Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space (Pure and Applied Mathematics: A Series of Texts and Monographs) | see "Product" |
Milnor J.W., Stasheff J.D. — Characteristic Classes. (Am-76), Vol. 76 | 92f, 105, 164, 237 |
Ivanov O.A. — Easy as Pi?: An Introduction to Higher Mathematics | 125, 134, 135, 136 |
Feynman R., Leighton R., Sands M. — Lectures on Physics 2 | II-2-8, II-31-8 |
Brown K. — Cohomology of Groups (Graduate Texts in Mathematics) | 109 |
Shirley P., Ashikhmin M, Gleicher M. — Fundamentals of computer graphics | 26 |
Klingenberg W. — A Course in Differential Geometry (Graduate Texts in Mathematics) | 4 |
Sipser M. — Introduction to the Theory of Computation | 6 |
Golan J.S. — The Linear Algebra a Beginning Graduate Student Ought to Know (Texts in the Mathematical Sciences) | 36 |
Conger D. — Physics modelling for game programming | 62—64 |
Jacky J. — The Way of Z: Practical Programming with Formal Methods | 79, 300 |
Grimaldi R.P. — Student Solutions Manual for Discrete and Combinatorial Mathematics | 152, 154, 248, 250, 270, 314 |
Kittel C., Knight W., Ruderman M. — Berkeley physics course 1. Mechanics | see "Vector(s), vector product" |