Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
Ìåõìàòÿíàì
square Ïåðâûé êóðñ

square Âòîðîé êóðñ

square Òðåòèé êóðñ

square ×åòâåðòûé êóðñ

square Ïÿòûé êóðñ
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
Êðàñîòà
blank
blank
Ðåçóëüòàò ïîèñêà

Ïîèñê êíèã, ñîäåðæàùèõ: Cross product



ÊíèãàÑòðàíèöû äëÿ ïîèñêà
Êîðìåí Ò., Ëåéçåðñîí ×., Ðèâåñò Ð. — Àëãîðèòìû: ïîñòðîåíèå è àíàëèç811
Heinbockel J.H. — Introduction to tensor calculus and continuum mechanics11
Keisler H.J. — Elementary calculus600
Grimaldi R.P. — Discrete and combinatorial mathematics. An introduction246—248, 271, 321
Borisenko A.I., Tarapov I.E. — Vector and Tensor Analysis with Applicationssee “Vector product”
Lipschutz Seymour — Schaum's Outline of Theory and Problems of Linear Algebra (Schaum's Outlines)49—50, 65—67
Olver P.J. — Equivalence, Invariants and Symmetry219
Oprea J. — Differential Geometry and Its Applications19—20
Bonet J., Wood R.D. — Nonlinear Continuum Mechanics for Finite Element Analysissee “Vector product”
Bilaniuk S. — A Problem Course in Mathematical Logic (vol. 1)79
Baker A. — Matrix Groups: An Introduction to Lie Group Theory68
Majid S. — Foundations of Quantum Group Theory19, 22, 214, 222, 227, 252, 282, 328, 346, 398, 491
Messer R. — Linear Algebra: Gateway to Mathematics288
Zienkiewicz O.C., Taylor L.R. — The finite element method (vol. 1, The basis)640
Pesic P. — Abel's Proof: An Essay on the Sources and Meaning of Mathematical UnsolvabilitySee Multiplication
Meyer C.D. — Matrix analysis and applied linear algebra332, 339
Buss S.R. — 3-D computer graphics. A mathematical introduction with openGL5, 42, 300, 321, 322, 325
Lee J.M. — Introduction to Smooth Manifolds172
Millman R.S., Parker G.D. — Elements of Differential Geometry6
Becker A.A. — The Boundary Element Method in Engineering. A complete course16, 75, 107
Levine I.N. — Molecular Spectroscopy12
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry363
Rich B., Schmidt Ph. — Schaum's Outline of Elementary Algebra (Schaum's Outline Series)219
Sagan H. — Advanced Calculus of Real-Valued Functions of a Real Variable and Vector-Valued Functions of a Vector Variable503
Hatcher A. — Algebraic Topology210, 218, 223, 268, 277, 278
Coffin D. — Algebra and Pre-Calculus on the HP 48G/GX174—175, 187—188, 190, 196—198, 203, 205, 208, 211
Coffin D. — Calculus on the HP-48G/GX224—225, 256
Brown K.S. — Cohomology of Groups109
Cooper J. — A Matlab Companion for Multivariable Calculus35
Thompson J.E. — Algebra for the Practical Man255
Kono A., Tamaki D. — Generalized Cohomology40
Shankar R. — Basic Training In Mathematics153
McMano D., Topa D.M. — A Beginner's Guide to Mathematica174
Ratcliffe J.G. — Foundations of Hyperbolic Manifolds35
Hall B.C. — Lie Groups, Lie Algebras, and Representations: An Elementary Understanding53, 60
Lounesto P., Hitchin N.J. (Ed), Cassels J.W. (Ed) — Clifford Algebras and Spinors37, 93
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration147
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1147
Sipser M. — Introduction to the theory of computation6
Hein J.L. — Discrete Mathematics33
Fripp A., Fripp J., Fripp M. — Just-in-Time Math for Engineers265, 272—275
Arvo J. — Graphics gems (vol. 2)333—334
Antman S.S. — Nonlinear Problems of Elasticity4, 371
Elberly D.H., Shoemake K. — Game Physics606—609
Sokolnikoff I.S. — Higher Mathematics for Engineers and Physicists400
Singer I.M., Thorpe J.A. — Lecture Notes on Elementary Topology and Geometry112
Carmo M.P. — Differential geometry of curves and surfaces12
Lebedev L.P., Cloud M.J. — Tensor Analysis20
Staffans O. — Well-Posed Linear Systems56
Sokolnikoff I.S. — Mathematics of Physics and Modern Engineering291
Fishbane P.M. — Physics For Scientists and Engineers with Modern Physics283—284
Featherstone R. — Rigid Body Dynamics Algorithms23—25, 243
Gallier J. — Geometric Methods and Applications: For Computer Science and Engineering240
Greenberg M.D. — Advanced engineering mathematics685
O'Neill B. — Elementary differential geometry47—49, 107, 110
Shirley P., Morley R.K. — Realistic Ray Tracing4
Strichartz R.S. — The way of analysis435
Feynman R.P., Leighton R.B., Sands M. — The Feynman lectures on physics (vol.2)II-2-8, II-31-8
Dubrovin B.A., Fomenko A.T., Novikov S.P. — Modern Geometry - Methods and Applications. Part 1. The Geometry of Surfaces, Transformation Groups and Fields43
Hein J.L. — Discrete Structures, Logic, and Computability32
Munkres J.R. — Analysis on manifolds183, 313
Nayfeh M.H., Brussel M.K. — Electricity and Magnetism5
Guggenheimer H.W. — Differential Geometrysee “Vector product”
Berger M., Cole M. (translator) — Geometry I (Universitext)8.11, 8.11.8, 8.12.9, 15.6.6
Freund L.B. — Dynamic Fracture Mechanics14
Pope S.B. — Turbulent Flows654-659, 660
Fenn R. — Geometry142
Desloge E.A. — Classical Mechanics. Volume 1425
Miller W. — Symmetry Groups and Their Applications102, 376
Farin G., Hansford D. — Practical Linear Algebra: A Geometry Toolbox168, 177
Selvadurai A.P.S. — Partial Differential Equations in Mechanics 1: Fundamentals, Laplace's Equation, Diffusion Equation, Wave Equation2
Barrels R.H., Beatty J.C. — An Introduction to Splines for use in Computer Graphics and Geometric Modeling302
Greenberg M.J., Harper J.R. — Algebraic Topology259
Olver P.J., Shakiban C. — Applied linear. algebra140, 221, 353, 401, 484
Hein J.L. — Theory of Computation: An Introduction16
Kreyszig E. — Advanced engineering mathematics377
Siegel W. — FieldsIIA1
Oprea J. — Differential Geometry and Its Applications18
Paeth A.W. (ed.) — Graphics gems (volume 5)II.333-II.334
McQuistan R.B. — Scalar and Vector Fields: a Physical Interpretation34
Margenau H., Murphy G.M. — The mathematics of physics and chemistry143
Arya A.P. — Introduction to Classical Mechanics147, 328
Carl D. Meyer — Matrix Analysis and Applied Linear Algebra Book and Solutions Manual332, 339
Greub W.H. — Linear Algebra194
Nicholson W.K. — Linear Algebra with Applications168
Browder A. — Mathematical Analysis: An Introduction289
Ohanian H.C. — Classical Electrodynamics4
Kreyszig E. — Introductory functional analysis with applications85
Harman T.L., Dabney J.B., Richert N.J. — Advanced Engineering Mathematicas with MATLAB67
Hefferon J. — Linear algebra298
Riley, Hobson — Mathematical Methods for Physics and Engineeringsee "Vector product"
Massey W.S. — A basic course in algebraic topology325, 330
Spanier E.H. — Algebraic Topology231—232, 234—235
Myler H.R., Weeks A.R. — Computer imaging recipes in C41
Davis H. F., Snider A. D. — Introduction to Vector Analysis32 (see also Vector product)
Nelson E.W., Best C.L., McLean W.G. — Schaum's outline of theory and problems of engineering mechanics. Statics and dynamics5, 13—14
Audin M. — Geometrysee "Vector product"
Audin M. — Geometrysee "Vector product"
Greub W.H. — Linear Algebra194
Copeland A.H. — Geometry, algebra, and trigonometry by vector methods113
Porteous I.R. — Clifford Algebras and the Classical Groups60
Siegel W. — FieldsIIA1
Lounesto P. — Clifford algebras and spinors37, 93
Weinreich G. — Geometrical vectors1, 3, 26—31, 49, 83—84, 109
Gries D. — A Logical Approach to Discrete Math266
Dorst L., Fontijne D., Mann S. — Geometric algebra for computer science86—89
Hirsch M.W., Smale S. — Differential Equations, Dynamical Systems, and Linear Algebra20
Hobbie R., Roth B. — Intermediate Physics for Medicine and Biology,5
Shreiner D., Woo M., Neider J. — OpenGL programming guide131, 769
Dunford N., Schwartz J., Bade W.G. — Linear operators. Part 2see "Product"
Barry Steven, Davis Stephen — Essential Mathematical Skills: For Students of Engineering, Science and Applied Mathematics82
Hildebrand F.B. — Advanced Calculus for Applications266
Griffits D.J. — Introductions to electrodynamics3, 6
Strang G. — Introduction to Applied Mathematics204, 510
Richter-Gebert J. — Realization Spaces of Polytopes, Vol. 16413
Blum E.K., Lototsky S.V. — Mathematics of Physics and Engineering17
Grimaldi R.P., Rothman D.J. — Discrete and Combinatorial Mathematics: An Applied Introduction152, 154, 248, 250, 270, 314
Mcdonald B.R. — Linear algebra over commutative rings239
Hassani S. — Mathematical Methods: for Students of Physics and Related Fields7, 28—31
Spivak M. — Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus84
Greenberg M.J., Harper J.R. — Algebraic topology: a first course259
Higham D.J., Higham N.J. — MATLAB guide56
Akenine-Möller T. — Real-Time Rendering45n, 722—723
Dunford N., Schwartz J.T., Bade W.G. — Linear Operators, Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space (Pure and Applied Mathematics: A Series of Texts and Monographs)see "Product"
Milnor J.W., Stasheff J.D. — Characteristic Classes. (Am-76), Vol. 7692f, 105, 164, 237
Ivanov O.A. — Easy as Pi?: An Introduction to Higher Mathematics125, 134, 135, 136
Feynman R., Leighton R., Sands M. — Lectures on Physics 2II-2-8, II-31-8
Brown K. — Cohomology of Groups (Graduate Texts in Mathematics)109
Shirley P., Ashikhmin M, Gleicher M. — Fundamentals of computer graphics26
Klingenberg W. — A Course in Differential Geometry (Graduate Texts in Mathematics)4
Sipser M. — Introduction to the Theory of Computation6
Golan J.S. — The Linear Algebra a Beginning Graduate Student Ought to Know (Texts in the Mathematical Sciences)36
Conger D. — Physics modelling for game programming62—64
Jacky J. — The Way of Z: Practical Programming with Formal Methods79, 300
Grimaldi R.P. — Student Solutions Manual for Discrete and Combinatorial Mathematics152, 154, 248, 250, 270, 314
Kittel C., Knight W., Ruderman M. — Berkeley physics course 1. Mechanicssee "Vector(s), vector product"
blank
HR
@Mail.ru
© Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01!| Valid CSS! Î ïðîåêòå