Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Guillemin V., Pollack A. — Differential topology | 40 |
Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 329 |
Hunter J.K., Nachtergaele B. — Applied Analysis | 381 |
Falconer K. — Fractal Geometry. Mathematical Foundations and applications | 70, 73 |
Zeidler E. — Nonlinear Functional Analysis and its Applications IV: Applications to Mathematical Physic | 552 |
Oksendal B. — Stochastic differential equations : an introduction with applications | 172—174, 188 |
Falconer K. — Fractal Geometry: Mathematical Foundations and Applications | 78 |
Hayek S.I. — Advanced mathematical methods in science and engineering | 23, 559 |
Meirovitch L. — Methods of analytical dynamics | 174, 179 |
Olver P.J. — Equivalence, Invariants and Symmetry | 19, 455 |
Lee J.M. — Differential and Physical Geometry | 235 |
Latrve D.R., Kreider D.L., Proctor T.G. — Hp-48G/Gx Investigations in Mathematics | 320, 321 |
Miranker W.L. — Numerical Methods for Stiff Equations and Singular Perturbation Problems | 176 |
Rudin W. — Real and Complex Analysis | 312 |
De Branges L. — Hilbert Spaces of Entire Functions | 136, 315 |
Lee J.M. — Introduction to Smooth Manifolds | 113 |
Schneider R. — Convex Bodies: The Brunn-Minkowski Theory | 73 |
Newstead P.E. — Introduction to modulu problems and orbit spaces | 66 |
Mimura M., Toda H. — Topology of Lie Groups, I and II | 310, 337 |
Bachman G. — Introduction to p-Adic Numbers and Valuation Theory | 113 |
Akhiezer N.I., Glazman I.M. — Theory of Linear Operators in Hilbert Space | 46 |
Birman M.S., Solomyak M.Z. — Spectral Theory of Self-Adjoint Operators in Hilbert Space | 83 |
Curtain R.F., Pritchard A.J. — Functional Analysis in Modern Applied Mathematics | 261 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry | 333—334 |
Hancock H. — Theory of Maxima and Minima | 177 |
Brieskorn E., Knorrer H. — Plane Algebraic Curves | I 213, 363 |
Hogben L. — Handbook of Linear Algebra | 24—8 |
Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 367, 379, 387 |
Milnor J.W. — Topology from the Differentiable Viewpoint | 7 |
Valls C., Barreira L. — Stability of Nonautonomous Differential Equations | 246 |
Terng Ch. — Critical Point Theory and Submanifold Geometry | 76, 182 |
Fleming W.H., Soner H.M. — Controlled Markov Processes and Viscosity Solutions | 42 |
Gohberg I., Goldberg S. — Basic Operator Theory | 226 |
Chung K.L., Walsh J.B. — Markov Processes, Brownian Motion, and Time Symmetry | 97 |
Oksendal B. — Stochastic Differential Equations: An Introduction With Applications | 183—185, 199 |
Lieberman G.M. — Second Order Parabolic Differential Equations | 38—41 |
Akivis M., Goldberg V. — Differential Geometry of Varieties with Degenerate Gauss Maps | 50, 63, 92, 93, 99, 151 |
Shiryaev A., Peskir G. — Optimal Stopping and Free-Boundary Problems | 152, 156 |
Lukes J., Maly J., Zajicek L. — Fine Topology Methods in Real Analysis and Potential Theory | 3, 397 , 392, 399 |
Cohn P.M. — Algebraic numbers and algebraic functions | 111 |
Eidelman Y., Milman V., Tsolomitis A. — Functional Analysis. An Introduction | 75, 173 |
Lang S. — Real Analysis | 518 |
Fukushima M. — Dirichlet forms and markov process | 93 |
Chipot M., Quittner P. — Stationary Partial Differential Equations, Vol. 1 | 707 |
Rudin W. — Real and complex analysis | 319 |
Golubitsky M., Guillemin V. — Stable Mappings and Their Singularities | 34 |
Stahl H., Totik V. — General Orthogonal Polynomials | 229 |
Gallier J. — Geometric Methods and Applications: For Computer Science and Engineering | 421 |
Kozlov V., Mazya V., Rossmann J. — Spectral problems associated with corner singularities of solutions to elliptic equations | 10 |
Pap E. — Complex Analysis Through Examples And Exercises | 227 |
Havin V.P., Nikolski N.K. (eds.) — Linear and Complex Analysis Problem Book 3 (part 2) | 12.30, S.16.22 |
Morimoto M. — Introduction to Sato's hyperfunctions | 113 |
Matsusaka T. — Theory of Q-varietties | II, § 1, 19 |
Bak J., Newman D.J. — Complex Analysis | 229 |
Blumenthal R.M. — Excursions of markov processes | 31 |
Silverman J.H. — Advanced Topics in the Arithmetic of Elliptic Curves | 302 |
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 2) Fourier analysis, self-adjointness | 88 |
Wen-Tsun W. — Mathematics Mechanization | c8s8. 4 |
Bhaya A., Kaszkurewicz E. — Control Perspectives on Numerical Algorithms and Matrix Problems | 32 |
Bertsekas D.P. — Constrained Optimization and Lagrange Multiplier Methods | 67 |
Anderson G.A., Granas A. — Fixed Point Theory | 367, 551 |
Knopp K. — Theory of Functions. Part Two | 93 |
Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142) | 562 |
Attouch H., Buttazzo G., Michaille G. — Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization | 393 |
Haller G. — Chaos Near Resonance | 377 |
M.A.Akivis, V.V.Goldberg — Projective Differential Geometry of Submanifolds | 7, 118 |
Vogel C.R. — Computational Methods for Inverse Problems (Frontiers in Applied Mathematics) | 155 |
Lee J.M. — Differential and physical geometry | 235 |
Alekseevskij D.V., Vinogradov A.M., Lychagin V.V. — Geometry I: Basic Ideas and Concepts of Differential Geometry | 125, 130, 144 |
Novikov S.P., Fomenko A.T. — Basic elements of differential geometry and topology | 62, 288 |
Cohn P.M. — Algebraic Numbers and Algebraic Functions | 111 |
Valentine F.A. — Convex Sets | 83 |
Flatto L. — Poncelet's Theorem | 76 |
Dienes P. — The Taylor series: An introduction to the theory of functions of a complex variable | 230, 241 |
IItaka S. — Algebraic Geometry: An Introduction to Birational Geometry of Algebraic Varieties | 120 |
Audin M. — Geometry | 258, 273 |
Audin M. — Geometry | 258, 273 |
Knopp K. — Theory of functions | 93 |
Gelbaum B.R. — Problems in Real and Complex Analysis | 11.1. 115 |
Zuo K. — Representations Of Fundamental Groups Of Algebraic Varieties | 60 |
Aulbach B. — Continuous and Discrete Dynamics Near Manifolds of Equilibria | 53, 93 |
Adams D.R., Hedberg L.I. — Function spaces and potential theory | 164, 181 |
Rudin W. — Function theory in polydiscs | 97 |
Bachman G. — Elements of Abstract Harmonic Analysis | 37 |
Hirsch M.W., Smale S. — Differential Equations, Dynamical Systems, and Linear Algebra | 200 |
Chung K.L., Walsh J.B — Markov Processes, Brownian Motion, and Time Symmetry | 97 |
Michel Boileau, Sylvain Maillot, Joan Porti — Three-dimensional orbifolds and their geometric structure | 20 |
Zeidler E. — Oxford User's Guide to Mathematics | 800 |
Kozlov V., Mazya V., Rossmann J. — Elliptic boundary value problems in domains with point singularities | 146 |
Arnold V.I. — Ordinary Differential Equations | 264 |
Pier J.-P. — Mathematical Analysis during the 20th Century | 290 |
Vidyasagar M. — Nonlinear systems analysis | 395 |
Margalef-Roig J., Outerelo Dominguez E. — Differential topology | 362 |
Fritzsche K., Grauert H. — From Holomorphic Functions To Complex Manifolds | 39, 140, 161 |
Snygg J. — Clifford algebra: a computational tool for physicists | 70 |
Blumenthal R.K., Getoor R.M. — Markov processes and potential theory | 61, 199 |
Greub W., Halperin S., Vanstone R. — Connections, curvature, and cohomology. Volume 1 | 136 |
Fayolle G., Iasnogorodski R., Malyshev V. — Random Walks in the Quarter-Plane: Algebraic Methods, Boundary Value Problems and Applications (Stochastic Modelling and Applied Probability) | 8 |
Ivanov O.A. — Easy as Pi?: An Introduction to Higher Mathematics | 144 |
Lord E., Wilson C. — The Mathematical Description of Shape and Form (Mathematics and Its Applications) | 74, 90 |
Snygg J. — Clifford algebra: a computational tool for physicists | 70 |
Falconer K. — Fractal geometry: mathematical foundations and applications | 78 |
Arkhipov G.I., Chubarikov V.N., Karatsuba A.A. — Trigonometric Sums in Number Theory and Analysis | 133 |