|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Lieberman G.M. — Second Order Parabolic Differential Equations |
|
|
Ïðåäìåòíûé óêàçàòåëü |
condition 236—238 253—254 318
spaces 121 129 130 154 229
spaces see “Morrey spaces”
solution 30—41
Barrier 38
Barrier, global 38—40
Barrier, local 40
Barrier, local, from earlier time 92 231—257 397 408 413
Barrier, local, two-sided 40
Bellman equations 363 375 382
Boundary point lemma 12
Brouwer fixed point theorem 204
Calderon — Zygmund decomposition 159—161 189
Campanato space 49—51
Campanato space, equivalent to Holder space 50—51 61—62
Caristi fixed point theorem 208—210
Cauchy — Dirichlet problem for fully nonlinear equations 369—378 381 385—420
Cauchy — Dirichlet problem for linear equations 36—41 77—78 89—95
Cauchy — Dirichlet problem for quasilinear equations 219—320
Comparison principles 13 37 159 188 219—222 363—364
Conormal problems 137—140 179 324—341 346—347 355—356
Contraction mapping principle 29
Convex-increasing domain 238—241 317 413—414
Cube decomposition see “Calderon — Zygmund decomposition”
Curvature conditions 243—247
Cylinder condition 233—234
DeGiorgi class 143—150
DeGiorgi iteration 144—145
Dini continuity 83—84
Distance functions, regularized 71—72
Distance functions, spatial 241—243
Domains with boundary 75 105—108 241
Domains with boundary 75—79 87—89 95 97 243 306—307 309 314—318
Duality argument 172—173
Elliptic part of operator 205
Extension of a function 73—74 175 183—185 235—236 328—331 341—343
False mean curvature equation 265—266 287—289 316—318
Fully nonlinear equation 361—384
Fully nonlinear equation, boundary gradient estimate 389 413—414
Fully nonlinear equation, boundary regularity 375—378 389
Fully nonlinear equation, Cauchy — Dirichlet problem 385—420
Fully nonlinear equation, global bound 389 412—413
Fully nonlinear equation, global solvability 369—371 374—375 377 381
Fully nonlinear equation, gradient bound 408
Fully nonlinear equation, gradient estimate 372—373 378—379 389—390 414
Fully nonlinear equation, Holder gradient estimate 373—375 379
Fully nonlinear equation, Holder second derivative estimate 365—371 377—378 400
Fully nonlinear equation, maximum estimate 364 378
Fully nonlinear equation, oblique derivative problem 378—381
Fully nonlinear equation, second derivative bounds 391—400 409—412 414
Fully nonlinear equation, uniformly parabolic 361—363 365—384
Gateaux variation 211—212 370
Global solvability 36—41 92—93 95—97 104—108 138 141—142 182 185 207—208 213—215 313—318 351 355—356 400—401 407 412 414
Gradient estimates, boundary 15 62—63 170 231—257 326—346 371
Gradient estimates, global 32—33 259—266 270—271 275—276 281 286—291
Gradient estimates, Holder 55—56 301—313 346—355
Gradient estimates, local 62—63 266—269 277—289 291—294
Harnack inequality for strong solutions 192
Harnack inequality for weak solutions 129
Harnack inequality, weak 186—192
Hessian equations 385—420
Hessian quotient equations 406—407
Holder continuity 129—132 134—135 140
Holder, continuity 46—49
Holder, norm 46—47
Holder, norm, weighted 47
Holder, semi-norm 46
Integro-differential equations 19 85 98
Interpolation inequalities 47—49 73 174—175
Linear parabolic equations (operators), classical solutions, Cauchy — Dirichlet problem 77—78 87—95
Linear parabolic equations (operators), classical solutions, maximum principles 7—20
Linear parabolic equations (operators), classical solutions, oblique derivative problem 79 88—89 95—97
Linear parabolic equations (operators), divergence form see “Weak solutions”
Linear parabolic equations (operators), first initial-boundary value problem see “Cauchy — Dirichlet problem”
Linear parabolic equations (operators), strong solutions 155—201
Linear parabolic equations (operators), strong solutions, estimates 173—185
Linear parabolic equations (operators), strong solutions, boundary estimates 177—185
Linear parabolic equations (operators), strong solutions, boundary regularity 192—197
| Linear parabolic equations (operators), strong solutions, Cauchy — Dirichlet problem 181—183
Linear parabolic equations (operators), strong solutions, global bound 155—159
Linear parabolic equations (operators), strong solutions, Holder estimate 192
Linear parabolic equations (operators), strong solutions, Holder estimates 197
Linear parabolic equations (operators), strong solutions, local bound 185—186
Linear parabolic equations (operators), strong solutions, maximum principle 155—159
Linear parabolic equations (operators), strong solutions, oblique derivative problem 183—185
Linear parabolic equations (operators), weak solutions 21—43 55—56 62—67 101—154
Linear parabolic equations (operators), weak solutions, boundary regularity 132—135
Linear parabolic equations (operators), weak solutions, Cauchy — Dirichlet problem 36—41 77 104—108 141—142
Linear parabolic equations (operators), weak solutions, continuous 35—43 55—56
Linear parabolic equations (operators), weak solutions, global bound 116—121 138—139
Linear parabolic equations (operators), weak solutions, Holder continuity 129—132 134—135 140
Linear parabolic equations (operators), weak solutions, local bound 121—132
Linear parabolic equations (operators), weak solutions, mixed boundary value problem 65—68 140—141
Linear parabolic equations (operators), weak solutions, oblique derivative problem 79 142
Local solvability 30—36 89—92 206—207
Maclaurin inequalities 402 406
Marcinkiewicz interpolation theorem 161—163
Maximal function 163—172
Maximum principles for fully nonlinear equations 364
Maximum principles for linear equations, classical solutions 7—20
Maximum principles for linear equations, strong solutions 155—159
Maximum principles for linear equations, weak solutions 129 139—140
Maximum principles for quasilinear equations 220—226 322—326
Mean curvature 242—244
Mean curvature equation 231 244 265 277 286—287 291—293 315—316 318 339—340
Method of continuity 29—30 369—370
Mixed boundary value problems 140—141 179 215—216 351
Monge — Ampere equation 385 386 407—414
Morrey space 130
Morrey space, weighted 56—58
Moser iteration 119—120 122 143
Newton inequalitites 402—403
Newton — Maclaurin inequalities 402—403 406
Nonlinear boundary condition see “Oblique derivative problem”
Oblique derivative problem for fully nonlinear equations 378—381
Oblique derivative problem for linear equations 8 13—14
Oblique derivative problem for quasilinear equations 211—215 321—360
Parabolic frustum 12 13 15 19 41 93 236 239
Paraboloid condition, interior 13 18
Perron process 36—41 89—93 95—96
Poincare’s inequality 28 114—116
Pucci operators 362
Quasilinear parabolic equations 203—360
Quasilinear parabolic equations, boundary regularity 231—257 305—309
Quasilinear parabolic equations, Cauchy — Dirichlet problem 206—208
Quasilinear parabolic equations, conormal problem 324—341 346—347 355—356
Quasilinear parabolic equations, global bounds 220—226 322—326
Quasilinear parabolic equations, gradient estimate 259—299
Quasilinear parabolic equations, gradient estimate, boundary 231—257 326—346
Quasilinear parabolic equations, Holder gradient estimate 301—313 346—355
Quasilinear parabolic equations, maximum principle 220—226
Quasilinear parabolic equations, oblique derivative problem 211—215 321—360
Quasilinear parabolic equations, weak solutions 301—302 324—341 346—347 355—356
Regular point 38—41
Regularized distance see “Distance functions regularized”
Schauder estimates, boundary 65—67 69—71
Schauder estimates, global 75—79 141—142
Schauder estimates, interior 56—60
Schauder estimates, intermediate 74—75
Schauder fixed point theorem 205—206
Sobolev imbedding theorem 109—112
Sobolev inequalities 109—114 135—137 271—275
Sobolev inequalities, weighted 112—114 275 327—328
Steklov average 102 108 118 126
Strong maximum principle 129
Strong solutions, Cauchy — Dirichlet problem 181—183
Strong solutions, oblique derivative problem 183—185
Subsolution 92 117
Subsolution, strict 387—391 393 396—397 407 408 412
Supersolution 117
Symmetric function 386 387
Symmetric polynomials 401—407
Uniformly parabolic equations, quasilinear 204 253 264 270—271 290 292—294 313—315 318 340—346
Vitali Covering Lemma 162—163
Weak maximum principle 7—9
Weak solutions 101—154 221—226
Weak solutions, estimates 165—173 177—179
|
|
|
Ðåêëàìà |
|
|
|