|
|
Ðåçóëüòàò ïîèñêà |
Ïîèñê êíèã, ñîäåðæàùèõ: Maxwell equations
Êíèãà | Ñòðàíèöû äëÿ ïîèñêà | Heinbockel J.H. — Introduction to tensor calculus and continuum mechanics | 176, 339 | Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 130.A | Chung T.J. — Computational fluid dynamics | 922—9 | Mahan G.D. — Many-particle physics | 61, 67, 126 | Ferziger J.H., Peric M. — Computational Methods for Fluid Dynamics | 370 | Zienkiewicz O.C., Taylor L.R. — The finite element method (vol. 3, Fluid dynamics) | 243, 246 | Ward R.S., Wells R.O. — Twistor geometry and field theory | 1, 47, 241, 244, 257, 289 | Atkins P.W., Friedman R.S. — Molecular Quantum Mechanics | 543, 544 | Papapetrou A. — Lectures on general relativity | 17, 112, 134 | Opechowski W. — Crystallographic and metacrystallographic groups | 395, N14.1 | Mukamel S. — Principles of Nonlinear Optical Spectroscopy | 103, 493 | Debnath L. — Nonlinear Partial Differential Equations for Scientists and Engineers | 344, 438—439 | Poprawe R. (ed.), Loosen P., Bachmann F. — High Power Diode Lasers: Technology and Applications | 183 | Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis | 307 | Ryder L.H. — Quantum Field Theory | 64ff, 69ff, 96, 110, 121 | Torretti R. — Relativity and Geometry | 36, 39, 43, 50, 55, 109, 116, 289 note 10, 297 note 9, 291 note 8, 293 note 8, 306 note 2, 307 note 5, 323 note 2, 327 note 11 | Tompkins H.G., Irene E.A. — Handbook of Ellipsometry | 3, 19, 23, 26, 30, 653, 657 | Bohren C.F., Huffman D.R. — Absorption and Scattering of Light by Small Particles | 12, 58 | Agoshkov V.I., Dubovsky P.B. — Methods for Solving Mathematical Physics Problems | 27 | Lounesto P., Hitchin N.J. (Ed), Cassels J.W. (Ed) — Clifford Algebras and Spinors | 101 | Knox R.S. — Theory of Excitons | 103 | Shiffer M.M., Bowden L. — Role of Mathematics in Science | 196, 197 | Heusler M., Goddard P. — Black Hole Uniqueness Theorems | 63, 129, 136 | Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 246 | Ito K. — Encyclopedic Dictionary of Mathematics | 130.A | Galindo A., Pascual P. — Quantum Mechanics Two | II 200 | Brown L.S. — Quantum Field Theory | 176 | Mukamel S. — Principles of nonlinear spectroscopy | 103, 493 | Konopinski E.J. — Electromagnetic fields and relativistic particles | 7, 12—25, 29, 86, 180 | Guimaraes A.P. — Magnetism and Magnetic Resonance in Solids | 2 | Maimistov A.I., Basharov A.M. — Nonlinear optical waves | 1, 271, 288, 297, 298, 305, 559 | van de Hulst H.C. — Light Scattering by Small Particles | 114—120, 154, 297, 329, 336 | De Felice F., Clarke C.J.S. — Relativity on curved manifolds | 227, 232, 233 | Tung W.K. — Group Theory in Physics: An Introduction to Symmetry Principles, Group Representations, and Special Functions | 202 | Shapira Y. — Solving PDEs in C++: numerical methods in a unified object-oriented approach | 434 | Kunz K.S., Luebbers R.J. — The finite difference time domain method for electromagnetics | 3, 4, 327, 329, 332, see also "Faraday — Maxwell equation" | Shen Y.R. — The Principles of Nonlinear Optics | 2—3 | Mishchenko M.I. — Scattering, Absorption, and Emission of Light by Small Particles | 5, 8—9, 32, 77, 78, 113, 191, 195 | Visser M. — Lorentzian wormholes. From Einstein to Hawking | 14 | Mattheij R.M.M., Molenaar J. — Ordinary Differential Equations in Theory and Practice (Classics in Applied Mathematics) (No. 43) | 305 | Hans-Jürgen Stöckmann — Quantum Chaos: An Introduction | 27—29, 43 | Auerbach F. — Modern magnetics | 249 | Balian R. — From Microphysics to Macrophysics: Methods and Applications of Statistical Physics (vol. 1) | 285—286 | Birrell N.D., Davies P.C.W. — Quantum Fields in Curved Space | 19 | Weinberg S. — The Quantum Theory of Fields. Vol. 1 Foundations | 1, 252, 339, 342, 370 | Jeffrey A., Taniuti T. — Mathematics in Science and Engineering: volume 9. Non-linear wave propagation | 48 | Borne T., Lochak G., Stumpf H. — Nonperturbative quantum field theory and the structure of matter | 12, 183 | Bjorken J.D., Drell S.D. — Relativistic Quantum Fields | 69, 71, 74—75 | Mclachlan D. — X-ray crystal structure | 152 | Ike E.R., Sabatier P.C. (Ed) — Scattering: Scattering and Inverse Scattering in Pure and Applied Science | 175-177 (see also Perturbed, reduced Maxwell equations) | Gray C.G., Gubbins K.E. — Theory of molecular fluids | 46—47 | ter Haar D. — Elements of Statistical Mechanics | 68 | Kompaneyets A.S., Yankovsky G. — Theoretical Physics | 109, 113 | Greiner W. — Quantum mechanics: special chapters | 1, 5 | Tsvelik A.M. — Quantum field theory in condensed matter physics | 104 | Mattheij R.M.M. — Partial differential equations: modeling, analysis, computation | 123 | Bertlmann R.A. — Anomalies in Quantum Field Theory | 287—290 | Rose M.E. — Relativistic Electron Theory | 33, 116 | de Groot S.R., Mazur P. — Non-equilibrium thermodynamics | 338—339 | Stewart I.W. — The Static and Dynamic Continuum Theory of Liquid Crystals: A Mathematical Introduction | 28, 31, 89, 90 | Tsang L., Kong J.A., Ding K.- H. — Scattering of electromagnetic waves (Vol 1. Theories and applications) | 2, 17, 54, 61, 73, 74, 80, 109, 157, 203, 278 | Anisimov S.I., Khokhlov V.A. — Instabilities in Laser-matter interaction | 19, 103 | Moh T.T. — Algebra | 51 | Tsang L., Kong J.A., Ding K.- H. — Scattering of electromagnetic waves (Vol 2. Numerical simulations) | 2, 17, 353, 496 | Landau L.D., Lifshitz E.M. — The classical theory of fields | 70, 78, 275 | Bona C., Palenzuela-Luque C. — Elements of Numerical Relativity: From Einstein's Equations to Black Hole Simulations (Lecture Notes in Physics) | 20 | Pedrotti L.M. — Introduction to Optics | 2, 392, 571—72, 576 | Falcke H. (ed.), Hehl F.W. (ed.) — The galactic black hole: lectures on general relativity and astrophysics | 13, 164, 184 | Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 336 | Israel W. (ed.) — Relativity, astrophysics and cosmology | 15, 28, 46 | Atkins P. — Molecular Quantum Mechanics | 514 | Büchner J., Dum C., Scholer M. — Space Plasma Simulation | 111 | Belotserkovsky S.M., Lifanov I.K. — Method of Discrete Vortices | 415 | Tsvelik A.M. — Quantum field theory in condensed matter physics | 104 | Astarita G., Marrucci G. — Principles of Non-Newtonian Fluid Mechanics | 40, 134, 141, 150, 215—20, 268, 271 | Ugarov V.A. — Special Theory of Relativity | 181, 206 | Feher L. (ed.), Stipsicz A. (ed.), Szenthe J. (ed.) — Topological quantum field theories and geometry of loop spaces | 99 | Szabo R.J. — An Introduction to String Theory and D-Brane Dynamics | 65, 94 | Greiner W., Reinhardt J. — Field quantization | 141, 143 | Lounesto P. — Clifford algebras and spinors | 101 | Moh T.T. — Algebra | 51 | Weinreich G. — Geometrical vectors | 93—94, 111 | Atkins P.W., Friedman R.S. — Molecular Quantum Mechanics | 514 | Hooft G.T. — Under the spell of the gauge principle | 12, 95 | Leader E., Predazzi E. — An introduction to gauge theories and modern particle physics | 2.99, 2.319—2.320 | Milonni P.W. — The quantum vacuum: introduction to quantum electrodynamics | 38, 39 | Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | 307 | Moriyasu K. — An Elementary Primer for Gauge Theory | 50, 57, see "Color gauge theory" | Greiner W. — Relativistic quantum mechanics. Wave equations | 49, 92, 364ff, 401 | Authier A., Lagomarsino S., Tanner B. — X-ray and neutron dynamical diffraction | 2, 3, 9, 34—36 | Abrikosov A.A., Gorkov L.P., Dzyalosliinski I.E. — Methods of quantum fields theory in statistical physics | 251, 253 | Israel W. (ed.) — Relativity, astrophysics and cosmology | 15, 28, 46 | Zeidler E. — Oxford User's Guide to Mathematics | 505, 568, 857 | Israel W. — Relativity, Astrophysics and Cosmology | 15, 28, 46 | Dolan T.J. — Fusion Research: Principles, Experiments and Technology | 105 | ter Haar D. — Elements of Statistical Mechanics | 68 | Abrikosov A.A., Gîr'kov L.P., Dzyalosiiinskh I.Yk. — Quantum field theoretical methods in statistical physics | 251, 253 | Mattheij R.M. — Partial differential equations | 123 | Groesen E., Molenaar J. — Continuum Modeling in the Physical Sciences (Monographs on Mathematical Modeling and Computation) | 31, 205 | Sexl R., Urbantke H.K. — Relativity, Groups, Particles. Special Relativity and Relativistic Symmetry in Field and Particle Physics | 262 | Yao W-M — Review of particle physics | 106 | Stamatescu I., Seiler E. — Approaches to Fundamental Physics | 108, 135 | Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 271, 336 | Azcarraga J., Izquierdo J. — Lie groups, Lie algebras, cohomology and some applications in physics | 120 | Jackson J.D. — Classical electrodynamics | 2, 238 | Halpern A., Erlbach E. — Beginning Physics II: Waves, Electromagnetism, Optics and Modern Physics | 315, 465 | Kittel C. — Introduction to solid state physics | 382 | Schiffer M.M. — The role of mathematics in science | 196, 197 | Miron R. — The Geometry of Higher-Order Lagrange Spaces: Applications to Mechanics and Physics (Fundamental Theories of Physics) | 261 |
|
|