|
|
Ðåçóëüòàò ïîèñêà |
Ïîèñê êíèã, ñîäåðæàùèõ: Hilbert, David
Êíèãà | Ñòðàíèöû äëÿ ïîèñêà | Gardner M. — Wheels, life, and other mathematical amusements | 16, 17 | Apostol T.M. — Calculus (vol 1) | 471 | Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 4.A 9.F 11.B 14.J-L, R, U 15.H 16.E, S 20.*, r 32.G 35.A, r 41.E 46.A, C, E, r 59.A 68.A, C, I, L 73.B 77.B, E 82.r 92.F 93.J 105.Z 107.A, r 111.I 112.D, r 120.A 126.I 150.G 155.A-C, E, G, H 156.A, C, D, r 160.D 162 172.J 179.B 181 188.r 189.r 196.A, B 197.A, B, r 217.H-J, r 220.E 222.r 226.G, r 253.D 267 284.A 285.A, 286.K 304.r 317.r 320.r 321.r 322.r 323.E, I, r 324.r 325.M 327.r 337.F 347.G, H, r 356.A 357.r 364.I 365.J 369.D, F 375.F 377.D 382.B 389.r 402.H 410.r 411.J, r 423.N 424.W 430.A 441.r 443.A 446.r App. A, Table 8 | Grimaldi R.P. — Discrete and combinatorial mathematics. An introduction | 139, 178, 260, 343, 731 | Berger M. — A Panoramic View of Riemannian Geometry | 44, 59, 88, 89, 91, 110, 111, 116, 120, 469, 548, 786 | Yale P.B. — Geometry and Symmetry | 118 | Apostol T.M. — Introduction to Analytic Number Theory | 293 | Eisenbud D., Harris J. — The Geometry of Schemes | 48, 125, 128 | Higham N. — Accuracy and stability of numerical algorithms | 526 | Coxeter H.S.M. — Non-Euclidean Geometry | 24, 179, 180, 191, 194, 195, 205, 241, 301 | Pesic P. — Abel's Proof: An Essay on the Sources and Meaning of Mathematical Unsolvability | 197n | Meyer C.D. — Matrix analysis and applied linear algebra | 307 | Reid M. — Undergraduate commutative algebra | 11, 49 | Ryden B. — Introduction to Cosmology | 33 | Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry | 64, 174, 517—518, 532 | Lim Ch., Nebus J. — Vorticity, Statistical Mechanics, and Monte Carlo Simulation | 68, 214 | Ewald W. — From Kant to Hilbert, Vol.2 | 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 61, 94, 152, 157, 158, 168, 306, 321, 443, 451, 762, 838, 923, 924, 925, 926—930, 942—946, 957, 972, 1021, 1023, 1024, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1049, 1051, 1056, 1058, 1059, 1071, 1075, 1077, 1084, 1085, 1087—1165, 1168, 1169, 1173, 1174, 1175, 1187, 1198, 1199, 1200, 1208, 1209, 1213, 1214, 1215, 1216, 1218, 1243, 1244, 1247, 1248, 1251, 1252, 1253, 1254, 1255, 1256, 1257, 1258, 1259, 1260, 1262, 1263, 1264, 1265, 1266, 1272, 1275 | Link G. (Ed) — One Hundred Years of Russell's Paradox: Mathematics, Logic, Philosophy | 2f, 93, 102, 159f, 162, 351, 455, 517, 533, 551 | Matijasevich Y. — Hilbert's 10th Problem | xix—xxi, 1, 2, 4, 5, 7, 15, 16, 34, 38, 53, 54, 66, 69—71, 92—95, 97, 99—101, 116, 117, 122, 126, 127, 129, 138, 139, 146, 149, 151, 152, 162, 168, 169, 174, 179, 192, 196, 197, 207, 212, 232 | Kline M. — Mathematics in Western Culture | 397 | Buzaglo M. — Logic of Concept Expansion | 19, 20, 21, 58, 88n | Parshin A.N., Shafarevich I.R. — Algebraic Geometry III : Complex Algebraic Varieties. Algebraic Curves and Their Jacobians | 11, 13 | Ewald W. — From Kant to Hilbert, Vol.1 | 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 61, 94, 152, 157, 158, 168, 306, 321, 443, 451 | Velleman D.J. — How to Prove It: A Structured Approach | 326 | Sagan H. — Advanced Calculus of Real-Valued Functions of a Real Variable and Vector-Valued Functions of a Vector Variable | 210 | Steele J.M. — Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities | 46, 55 | Devlin K.J. — Language of Mathematics: Making the Invisible Visible | 81, 144, 181 | Enderton H.B. — Elements of set theory | 166 | Leng M. (ed.), Paseau A. (ed.), Potter M. (ed.) — Mathematical Knowledge | 19, 151 | Hrbacek K., Jech T. — Introduction to Set Theory | 101 | Corfield D. — Towards a Philosophy of Real Mathematics | 87 | Greiner W. — Quantum mechanics. An introduction | 65 | Olds C.D., Davidoff G. — Geometry of Numbers | 151 | Dawson Jh.W. — Logical Dilemmas: The Life and Work of Kurt Godel | 75, 82, 219, 321, 327 | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1 | 1003, 1024, 1031, 1035, 1038, 1137 | Rockmore D. — Stalking the Riemann Hypothesis: The Quest to Find the Hidden Law of Prime Numbers | 121—125, 172, 177 | Pickover C.A. — Wonders of Numbers: Adventures in Mathematics, Mind, and Meaning | 77, 79 | Stillwell J. — Yearning for the Impossible: The Surprising Truths of Mathematics | 68 | Borwein J., Bailey D., Girgensohn R. — Experimentation in Mathematics: Computational Paths to Discovery | vii$\dag$, 133 | Borwein J., Bailey D. — Mathematics by Experiment: Plausible Reasoning in the 21st Century | 35 | MacLane S. — Saunders MacLane: A Mathematical Autobiography | 44, 45, 47, 50, 94, 343 | Wapner L. — The Pea and the Sun: A Mathematical Paradox | 13, 15, 43, 98, 100, 125, 192 | Sipser M. — Introduction to the theory of computation | 154, 417 | Nasar S. — A Beautiful Mind | 52, 53, 81, 157 | Stewart I., Tall D. — Algebraic Number Theory and Fermat's Last Theorem | 5, 161 | Rudin W. — Functional analysis | 372, 376 | Purdom R.W., Brown C.A. — The analysis of algorithms | 440 | Rall D. — Computational Solution to Nonlinear Operator Equations | 22, 57, 211 | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 3 | 1003, 1024, 1031, 1035, 1038, 1137 | National Council of Teachers of Mathematics — Historical Topics for the Mathematics Classroom Thirty-First Yearbook | 84, 190, 191, 364, 468, 469 | Higham N.J. — Accuracy and Stability of Numerical Algorithms | 523 | Apostol T.M. — Calculus: One-Variable Calculus with an Introduction to Linear Algebra, Vol. 1 | 471 | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 2 | 1003, 1024, 1031, 1035, 1038, 1137 | Hofstadter D.R. — Godel, Escher, Bach: An Eternal Golden Braid | 20, 23—24, 230, 459—460 | von zur Gathen J., Gerhard J. — Modern computer algebra | 3, 22, 23, 81, 83, 130, 349, 395, 469, 546, 560, 561, 562, 565, 590, 591, 642, 689, 690, 692, 704, 711, 722 | Truesdell C. — Essays in the History of Mechanics | 178, 180, 182, 336 | Kasner E., Newman J. — Mathematics and the Imagination | 222 | Knuth D.E. — The art of computer programming (vol. 3 Sorting and Searching) | 395 | Rockmore D. — Stalking the Riemann Hypothesis | 121—125, 172, 177 | Berg M.C. — The Fourier-Analytic Proof of Quadratic Reciprocity | xiv ff | Poincare H. — Mathematics and Science: Last Essays | 42, 55 | Dewdney A.K. — Beyond reason. 8 great problems that reveal the limits of science | 69, 134, 143, 146—150, 159—160, 164 | Aczel A.D. — God's Equation: Einstein, Relativity, and the Expanding Universe | 112-13, 114-15 | Faith C. — Rings and Things and a Fine Array of Twentieth Century Associative Algebra | 267, 271, 308, 315, 315n | Auletta G. — Foundations and Interpretation of Quantum Mechanics | 37 | Hellman H. — Great Feuds in Mathematics: Ten of the Liveliest Disputes Ever | 6, 117, 140, 155, 184—186, 207 | Rosenfeld B.A. (Author), Shenitzer A. (Translator), Grant H. (Assistant) — A history of non-Euclidean geometry: evolution of the concept of a geometric space | 261—262, 273—276, 333, 349—350, 402, 416—417, 426 | Ralph P. Boas Jr, Alexanderson G.L., Mugler D.H. — Lion Hunting and Other Mathematical Pursuits | 19, 44—45, 55 | Gardner M. — Knotted Doughnuts and Other Mathematical Entertainments | 222, 223, 225 | Struik D.J. — A concise history of mathematics. Volume 2 | 208, 232, 239, 240, 267, 268, 272, 275, 283, 284, 287 | Carl D. Meyer — Matrix Analysis and Applied Linear Algebra Book and Solutions Manual | 307 | Truesdell C.A., Wang C.C. — Rational Thermodynamics | 421, 422, 433, 441, 448 | Eisenbud D., Harris J. — The geometry of schemes (textbook draft) | 48, 125, 128 | Marks R.J.II. — The Joy of Fourier | 126, 552 | Adams P.W., Smith K., Výborný D. — Introduction to Mathematics with Maple | 237 | Coxeter H.S.M. — The Real Projective Plane | 106, 138, 145, 180 | Enderton H.B. — A Mathematical Introduction to Logic | 152 | Heisenberg W. — The Physicist's Conception of Nature | 182 | Tietze H. — Famous Problems of Mathematics Solved and Unsolved | 117, 119, 266, 301, 332, 335 | Borovik A.V. — Mathematics under the microscope | 128, 207 | Kazarinoff N. — Analytic inequalities | 75 | Rucker R. — Mind Tools. The Five Levels of Mathematical Reality | 197, 208, 216—218, 220 | Gamow G. — Creation of the Universe | 28—29 | Kasner E., Newman J. — Mathematics and the imagination | 222 | Katz V.J. — A History of Mathematics: An Introduction | 767—768, 797—800 | Cofman J. — Numbers and shapes revisited: More problems for young mathematicians | 66 | Wilf H.S., Zeilbercer D., Petkovšek M. — A=B | 4 | Gries D. — A Logical Approach to Discrete Math | 3, 79, 111, 116, 129, 132, 231, 403, 469 | Hartshorne R. — Algebraic Geometry | 51, 403, 441 | Ewald W.B. — From Kant to Hilbert: A source book in the foundations of mathematics. Volume 2 | 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 61, 94, 152, 157, 158, 168, 306, 321, 443, 451, 762, 838, 923, 924, 925, 926—930, 942—946, 957, 972, 1021, 1023, 1024, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1049, 1051, 1056, 1058, 1059, 1071, 1075, 1077, 1084, 1085, 1087—1165, 1168, 1169, 1173, 1174, 1175, 1187, 1198, 1199, 1200, 1208, 1209, 1213, 1214, 1215, 1216, 1218, 1243, 1244, 1247, 1248, 1251, 1252, 1253, 1254, 1255, 1256, 1257, 1258, 1259, 1260, 1262, 1263, 1264, 1265, 1266, 1272, 1275 | Taylor E.F. — Exploring Black Holes: Introduction to General Relativity | 2-30 | Curry H.B. — Foundations of Mathematical Logic | 11, 15—17, 19, 22—27, 61—62, 83, 85—89, 120, 122, 183, 246—249, 288, 307, 342, 348, 358 | Bell E.T. — Men of mathematics. Volume 2 | 67, 262, 489, 460, 511, 624, 635ff. | Davis M., Sigal R., Weyuker E. — Computability, complexity, and languages: Fundamentals of theoretical computer science | 410, 411 | Derbyshire J. — Prime Obsession: Bernhard Riemann and the greatest unsolved problem in mathematics | x, 92, 159, 166, 170, 184—190, 196—197, 252, 253—254, 256, 276, 277, 279, 353, 354, 377, 391, pl. 4 | Zeidler E. — Oxford User's Guide to Mathematics | 281, 552, 565, 589, 599, 629, 685, 691, 696, 742, 802, 831, 895, 906, 919, 1192 | Williams C.P., Clearwater S.H. — Explorations in quantum computing | 19, 27, 28, 29, 51 | Polya G. — Mathematical Discovery: On Understanding, Learning and Teaching Problem Solving Combined Edition | 2 127 | Grimaldi R.P., Rothman D.J. — Discrete and Combinatorial Mathematics: An Applied Introduction | 119, 188, 259, 333, 706 | Hadlock C.R. — Field theory and its classical problems | 219, 220 | Cofman J. — What to Solve? Problems and Suggestions for Young Mathematicians | 237—238, 240, 244 | Kline M. — Mathematics for the Nonmathematician | 25 | Thorne K.S., Hawking S. — Black holes and time warps: Einstein's outrageous legacy | 115—117, 120 | Hammerlin G., Hoffmann K.-H., Schumaker L.L. — Numerical Mathematics | 122 | Stein S. — Strength In Numbers: Discovering the Joy and Power of Mathematics in Everyday Life | 101 | Muir J. — Of Men and Numbers: The Story of the Great Mathematicians | 220, 240 | Sipser M. — Introduction to the Theory of Computation | 142, 383 | Tipler F.J. — The Physics of Immortality | 248 | Krantz S. — Mathematical apocrypha redux | 11, 13, 45, 149, 160, 171, 220, 227 | Ewald W.B. — From Kant to Hilbert: A source book in the foundations of mathematics. Volume 1 | 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 61, 94, 152, 157, 158, 168, 306, 321, 443, 451 | Wilson R. — Mathematical conversations: selections from The mathematical intelligencer | 4—5, 49—50, 186, 192, 235, 374, 412, 427, 443, 446—464, 466—482 | Grimaldi R.P. — Student Solutions Manual for Discrete and Combinatorial Mathematics | 119, 188, 259, 333, 706 | Stein S. — Strength In Numbers: Discovering the Joy and Power of Mathematics in Everyday Life | 101 | Odifreddi P., Sangalli A., Dyson F. — The Mathematical Century: The 30 Greatest Problems of the Last 100 Years | xii, 4, 6 | Krantz S. — Mathematical Apocrypha Redux: More Stories and Anecdotes of Mathematicians and the Mathematical (Spectrum) (Spectrum) | 11, 13, 45, 149, 160, 171, 220, 227 | Jammer M. — Concepts of space: The history of theories of space in physics | 170, 239 | Davis R.E. — Truth, Deduction, and Computation: Logic and Semantics for Computer Science | 106 | Kline M. — Mathematical thought from ancient to modern times | 1003, 1024, 1031, 1035, 1038, 1137 | Brezinski C. — History of Continued Fractions and Padé Approximants | 186, 195, 209, 230, 265, 286, 288, 289, 290, 291, 388, 464 | Gardner M. — Knotted Doughnuts and Other Mathematical Entertainments | 222, 223, 225 | Alexanderson G. — The harmony of the world: 75 years of Mathematics Magazine MPop | 16, 51, 66, 83, 89, 92, 93, 95, 192 | Hrbacek K., Jech T. — Introduction to Set Theory, Third Edition, Revised, and Expanded (Pure and Applied Mathematics (Marcel Dekker)) | 101 | Sondheimer E., Rogerson A. — Numbers and Infinity: A Historical Account of Mathematical Concepts | 68 |
|
|