Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Davis M., Sigal R., Weyuker E. — Computability, complexity, and languages: Fundamentals of theoretical computer science
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Computability, complexity, and languages: Fundamentals of theoretical computer science
Àâòîðû: Davis M., Sigal R., Weyuker E.
Àííîòàöèÿ: This introductory text covers the key areas of computer science, including recursive function theory, formal languages, and automata. It assumes a minimal background in formal mathematics. The book is divided into five parts: Computability, Grammars and Automata, Logic, Complexity, and Unsolvability. * Computability theory is introduced in a manner that makes maximum use of previous programming experience, including a "universal" program that takes up less than a page.* The number of exercises included has more than tripled.* Automata theory, computational logic, and complexity theory are presented in a flexible manner, and can be covered in a variety of different arrangements.
ßçûê:
Ðóáðèêà: Computer science /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Èçäàíèå: 2-nd edition
Ãîä èçäàíèÿ: 1994
Êîëè÷åñòâî ñòðàíèö: 628
Äîáàâëåíà â êàòàëîã: 30.03.2014
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
-trees 273—274 278
-trees, paths in 278
215—230
as a collection of sets 215
as a property of predicates 217
215—230
as a collection of sets 215
as a property of predicates 217
1-completeness 209 226
Algorithms 3 68 79—80 95 411
Almost everywhere 421
Alphabets 4 113 347 375 505
Alphabets of linear bounded automata 330
Alphabets of pushdown automata 310
Alphabets of Turing machines 146
Approximation orderings 470—471 487 505 see "Partial
Arithmetic hierarchy 215—230
Arithmetic predicates 223
Assignments, complete type 512 513 516 539
Assignments, continuous variable 514—515 539
Assignments, Herbrand ideal type 546
Assignments, on propositional atoms 348 406 455—456
Assignments, type 511—512
Assignments, variable 514—515
atoms 347
Automata theory 237
Axiom of Choice 474
Axiomatizable theories 407—410 415
Axiomatizable theories, -consistent 410
Axiomatizable theories, complete 410
Axiomatizable theories, consistent 410
Axiomatizable theories, nonrecursive 415
Balanced words 309—310
Bar-Hillel's pumping lemma 287—290 299
Base n notation 116 328 580
Binary relations 472
Binary relations, restrictions of 472
Blum axioms 419—425
Blum speedup theorem 437—438
Blum, Manuel 419
Boolean algebra 350
Bottom elements 477
Bracket languages 301—308
Cantor, Georg 406
Cartesian product 3
Case, John 103
Chains 477 499
Chang, C.L. 593
Chomsky hierarchy 327—330
Chomsky normal form grammars 285—287 287—290 297 303 306 308 313 316 319
Chomsky normal form grammars, separators of 303—308 313 319
Chomsky — Schuetzenberger representation theorem 306
Church's thesis 69 80 90 95 96 141 161 162 197 407 445 447
Church, Alonzo 411
clauses 355—356
Clauses, linked sets of 366—367 396 398 400
Clauses, minimally unsatisfiable sets of 366—367 392 395
Clauses, unit 361 362 363
Closure properties 4
Closure properties for context-free languages 291—297
Closure properties for context-sensitive languages 329 337—344
Closure properties for regular languages 249—256
CNF see "Conjunctive normal form"
Co-NP 450
COBOL 323
Coding of -programs 579—582
Coding of -substitutions 579—582
Coding of -terms 579—582
Coding of finite functions 203—204 580
Coding of pairs 59—60 see
Coding of programs 65—67
Coding of sequences 60—63 see
Coding of states of programs 71
Coding of strings 113—115
COF 227
Coincidence lemma 518 527
COMP 48
Compact elements of a cpo 486
Compactness theorem for predicate logic 390 404—406
Compactness theorem for propositional calculus 370—373 390 404
Compilers 323—326
Complete partial orders 475—486 516 see "Orderings"
Complete partial orders, algebraic 486 494
Complete partial orders, compact elements of 486
Complete partial orders, flat 477 539
Complete partial orders, of continuous variable assignments 516—517
Complexity, abstract 419—438
Complexity, measures 419
composition 39—40 42 76 77 108 200 576
Computability theory 17 18 31 70 98 113 169 237 443
Computable real numbers 554 587 589—590
Computations, by programs 27 28 29 70—75 420 468 557
Computations, by linear bounded automata 339—343
Computations, by nondeterministic Turing machines 160 171 447—448 451—456
Computations, by pushdown automata 311—323
Computations, for W-terms 559—575 584—587 588
Computations, infinite 469—470 563
Configurations of linear bounded automata 330 331
Configurations of Post — Turing programs 130
Configurations of pushdown automata 311
Configurations of Turing machines 147 159—160 444 452—456
Conjunctive normal form 356—360 364 368 392 393 444 446 447—448 451—456 457—458 461
Constant symbols 375 506
Context-free grammars 269—280 326 327 497—499 see
Context-free grammars, ambiguity of 300 303 307 319
Context-free grammars, branching 277 279 285
Context-free grammars, Chomsky normal form see "Chomsky normal form grammars"
Context-free grammars, derivation trees in see "Derivation trees"
Context-free grammars, derivations in 270 275 277
Context-free grammars, Greibach normal form 287
Context-free grammars, kernels of 271
Context-free grammars, languages generated by 270
Context-free grammars, left-linear 285
Context-free grammars, leftmost derivations in 275—277
Context-free grammars, positive 269 271 273 277 327
Context-free grammars, productions of 269
Context-free grammars, regular 280—285 327
Context-free grammars, right-linear 283 304
Context-free grammars, rightmost derivations in 275—277
Context-free grammars, self-embedding 284
Context-free grammars, unsolvable problems involving 297—301
Context-free languages 269—326 327—328 337 450 see
Context-free languages, and compilers 323—326
Context-free languages, and pushdown automata 308—323
Context-free languages, closure properties for 291—297
Context-free languages, deterministic 323
Context-free languages, infinite 298—299
Context-free languages, inherently ambiguous 301
Context-free languages, nonregular 270
Context-free languages, regular 280—285
Context-sensitive grammars 189—190 327—330
Context-sensitive grammars, unsolvable problems involving 339
Context-sensitive languages 327—344
Context-sensitive languages, closure properties for 329 337—344
Context-sensitive languages, open questions concerning 343
Cook — Karp thesis 445
Cook's theorem 451—456
Corollaries 8
Correctness of operational semantics 557
Correctness of programs 536
Course-of-values recursion 62—63
CPO 477 see
cpo, flat 477
Data structure systems 531 536
Data structure systems, infinitary 544—556 584—592
Data structure systems, simple 539—544 557—575
Davis — Putnam rules 360—366 368 391 393 396 444
Davis, Martin 593
de Morgan identities 2 6 7 50 251 291 350 354 371 380
Definition by cases 50—51
Degree of function symbols 375
Degree of polynomials 441
Degree of relation symbols 375
Derivation trees 274—279 298 498
Derivation trees, pruning and splicing of 279 289
DFA 243 see
DFA, minimal 266
Diagonal Lemma 492 502 518
Diagonalization 88—90 94 106 328 406 429
Disjunctive normal form 356—360 444
DNF see "Disjunctive normal form"
Dovetailing 80 81 408
DTIME 450
Duality, general principle of 350 356 358 380
Dyck languages 303 306
Empty program 26
Enderton, Herbert P. 593
Enumeration Principle 370 371 405
Enumeration theorem 81
Equivalence relations 263
Euclid 57
Exchange Lemma 490 491 503
EXPTIME 450 451
Extension Lemma 526—527 532 534 573
Fibonacci numbers 62 529
Finite automata 237—242
Finite automata, deterministic 243 280 292
Finite automata, nondeterministic 242—249 281 324
Finite automata, nonrestarting 250 316
Finite satisfiability 370—372
Finiteness theorem 204
First-order logic see "Quantification theory"
Fixed point induction principle 499 see fixed
Fixed point theorem 101 501 see
Fixed point theorem for cpos 495—496 497 499 501 524
Fixed points 494—503
Fixed points as solutions to W-programs 523
Floyd, R.W. 181
Formulas, atomic 376
Formulas, ground 392
Formulas, Herbrand instances of 412—414
Formulas, in predicate logic 376
Formulas, propositional 347 496—500
Formulas, quasi-representing sets 409
Formulas, representing functions 410
Formulas, representing sets 408 409
Formulas, semantically equivalent 380
FORTRAN 279 323 324
Function symbols 375 506
Function symbols, arity of 506
Function symbols, built-in 509
Function symbols, constructor 509
Function symbols, degree of 375
Function symbols, discriminator 509
Function symbols, proper 506
Function symbols, selector 509
Functions 3
Functions, -computable 574 575—584
Functions, binary 3
Functions, Boolean-valued 5
Functions, characteristic 6 78 see
Functions, computable 28—32 41 42 77 112 116 121 469 567
Functions, computed by programs 19 22—25 30
Functions, computed by Post — Turing programs 134 135 140 141 147 149 150
Functions, computed by Turing machines 146—152
Functions, computed strictly 134 135 139 146 148
Functions, constructible 428
Functions, continuous 486—494 495
Functions, domain of 3
Functions, elementary 59
Functions, exponential 425 442 444 450
Functions, G-computable 198
Functions, G-partial recursive 198
Functions, G-recursive 198
Functions, higher order 470 481 520
Functions, intuitively computable see "Church's thesis"
Functions, monotonic 487—494
Functions, n-ary 3 200
Functions, nowhere defined 3 31
Functions, on strings 116—117
Functions, one-one 4 84
Functions, onto 4
Functions, partial 3 24
Functions, partial recursive 30 84
Functions, partially computable 30 39 70 73 75 76 83 96 116 127 140 148 198 199 467 501 578—582
Functions, partially computable in 121 127 135 140 141
Functions, partially G-computable 198
Functions, polynomial time computable 445
Functions, primitive recursive 39—63 84 105—112 117 188 262 576—578
Functions, range of 3 82 83 84
functions, recursive 30 84 426 428 436 437
Functions, strict 487 539 564
Functions, strict extensions of 487
Functions, total 3 5 30 40 42 90 198 199 200 201 202 204 205
Functions, unary 3
G-r.e. sets 211—215
Gap theorem 425—428
Garey, Michael R. 593
Goedel numbers 60—63 66 67 71 74—75 79 84 108 200 204 217—218 222 232 435 580
Goedel's incompleteness theorem 407—410
Goedel, Kurt 60
Goldbach's conjecture 69 70
grammars 186—191 see "Context-sensitive "Regular
Grammars, derivations in 188 270
Grammars, languages generated by 186 270 327—329
Grammars, left-linear 285
Grammars, null productions of 269 327 344
Grammars, phrase structure 186 327
Grammars, positive context-free 269 327
Grammars, productions of 186 269
Grammars, regular 280—285 327
Grammars, right-linear 283 304
Grammars, self-embedding 284
Grammars, start symbol of 186 269
Grammars, terminals of 186 269
Grammars, unsolvable problems concerning 191—192 300—301 322 339
Grammars, variables of 186 269
graphs 458—460
Graphs, cliques in 459
Graphs, complete 458—459
Greatest lower bounds 476
Greibach normal form grammars 287
Ground clauses 392
Ground resolution 369 see in
Ground resolution theorem 369
Gunter, Carl A. 593
Halmos, Paul R. 593
Halting problem 68—70 78 82 89 97—98 99 197 467 488 523 554 see halting
Halting problem for Post — Turing programs 144
Halting problem for Turing machines 157—158
Harrison, Michael 594
Herbrand instances of formulas 412—414
Herbrand universes 388 389 390 392 393 395 398 405 406 412 542
Herbrand's theorem 388—398 404
Hilbert, David 410 411
Homomorphisms 253 296 344
Horn clauses 403
Horn programs 404
Hrbacek, Karel 594
Ideals 482—483 546—556
Ideals, principal 482 552
Immerman, Neil 339
Index sets 95 103 230—231
Induction 9—13
Induction, complete 11—12
Induction, course-of-values 11—12 302
Induction, fixed point 499—500 536—537
Induction, hypothesis 10
Induction, loading 11 109
Induction, mathematical 9—13 52 86 206 215 245 256 264 271 293 304 305 433 495 540 571 576
Ðåêëàìà