Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Davis M., Sigal R., Weyuker E. — Computability, complexity, and languages: Fundamentals of theoretical computer science
Davis M., Sigal R., Weyuker E. — Computability, complexity, and languages: Fundamentals of theoretical computer science



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Computability, complexity, and languages: Fundamentals of theoretical computer science

Àâòîðû: Davis M., Sigal R., Weyuker E.

Àííîòàöèÿ:

This introductory text covers the key areas of computer science, including recursive function theory, formal languages, and automata. It assumes a minimal background in formal mathematics. The book is divided into five parts: Computability, Grammars and Automata, Logic, Complexity, and Unsolvability. * Computability theory is introduced in a manner that makes maximum use of previous programming experience, including a "universal" program that takes up less than a page.* The number of exercises included has more than tripled.* Automata theory, computational logic, and complexity theory are presented in a flexible manner, and can be covered in a variety of different arrangements.


ßçûê: en

Ðóáðèêà: Computer science/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 2-nd edition

Ãîä èçäàíèÿ: 1994

Êîëè÷åñòâî ñòðàíèö: 628

Äîáàâëåíà â êàòàëîã: 30.03.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Induction, structural      500—501 516 517 518 534 535 558 567 571
inf      225
Initial functions      42 76 108
Instantaneous descriptions      27 see
instructions      17—18 26 65—67 197
Instructions, conditional branch      18 35
Instructions, decrement      18
Instructions, increment      18
Instructions, labeled      26
Instructions, numbers of      65—67 74 201
Instructions, of $\mathscr{S}_{n}$ programs      122
Instructions, of Post — Turing programs      129
Instructions, oracle      197—198 201
Instructions, unlabeled      26
Instructions, while      103
Interpretations, continuous      513 539
Interpretations, for predicate logic vocabularies      377 382 411
Interpretations, for typed vocabularies      512—513 539 546
Interpretations, Herbrand ideal      546
interpreters      70
Intractability      444 457 459
Isomorphisms      485
Iteration theorem      see "Parameter theorem"
Jech, Thomas      594
Johnson, David S.      593
Jumps of sets      213
Kleene's hierarchy theorem      216
Kleene's theorem      253—260
Kuroda, S.Y.      331 339
l'Hospital's rule      442
labels      18 25
Landweber, P.S.      331
Languages      4 see
Languages, accepted by deterministic Turing machines      189
Languages, accepted by finite automata      239
Languages, accepted by linear bounded automata      330—337
Languages, accepted by nondeterministic finite automata      243
Languages, accepted by nondeterministic Turing machines      160—161 186 189
Languages, accepted by pushdown automata      311—323
Languages, accepted by Turing machines      153—157 189
Languages, generated by grammars      186 189 270 327—328
Languages, in NP      see "NP"
Languages, inherently ambiguous      301
Languages, NP-complete      see "NP-completeness"
Languages, NP-hard      449
Languages, polynomial-time decidable      see "P"
Languages, recursive      156 190 328 446
Languages, recursively enumerable      see "r.e. languages"
Languages, spanning sets for      263
Lattices      485 502
Lazy functional languages      553
Least upper bounds      476
Lee, R.C.T.      593
Lemmas      8
Lewis, Harry R.      594
Lexical analysis      323
Linear bounded automata      330—343
Linear bounded automata, deterministic      336 337 343
Linears orders      472 see
Linked conjunct procedures      400
Lisp      507
Lists, finite      541 552
Lists, infinite      553 588—590
Lists, prefix      553
Literals      354 447—448
Loeckx, Jacques      594
Logic      see "Propositional calculus" "Quantification
Logic programming languages      403
Logical consequence      382—388
Loveland, Donald W.      594
m-completeness      92 93 97 210 217
Machtey, Michael      427 594
Macro expansions      20—24 33 35 121—123
macros      20 32—37 122—123 127
Macros for Post — Turing programs      136 137
Many-one reducibility      90—95 207—211
Markov, A.A.      178
Mates      355 357—358 366—367 397—398 399 see
Meaning functions, denotational      527 533 536 557 573—574 586
Meaning functions, operational      566 573—574 585—586
Metavariables      506
Minimal unsatisfiability      366—367 392 395 see truth
Minimalization      55—59 75 76 77 200 578
Minimalization, bounded      55—58
Minimalization, proper      77
Minimalization, unbounded      57—58
Models      380 382 384 385 406 412
Models, countable      406
Myhill — Nerode theorem      263—264
Myhill, John      232 263
n-tuples      2
Natural numbers      1
NDFA      243 see nondeterministic"
Nerode, Anil      263
Normal Form Theorem      75
Normal processes      192—195
Normal productions      193
NP      446—451 456 457—463
NP-complete problems, 2-COLORABILITY      461
NP-complete problems, 2-SAT      461—462
NP-complete problems, 3-DIMENSIONAL-MATCHING      460
NP-complete problems, 3-SAT      457—458 460 461 462
NP-complete problems, CHROMATIC-NUMBER      461 462
NP-complete problems, COMPLETE-SUBGRAPH      458—459 462
NP-complete problems, EXACT-COVER      462
NP-complete problems, HALF-SAT      456
NP-complete problems, HAMILTONIAN-CIRCUIT      460 462
NP-complete problems, INTEGER-PROGRAMMING      460
NP-complete problems, KNAPSACK      463
NP-complete problems, LONGEST-COMMON-SUBSEQUENCE      462
NP-complete problems, MAX-CLIQUE      459
NP-complete problems, MULTIPROCESSOR-SCHEDULING      463
NP-complete problems, PARTITION      460 462 463
NP-complete problems, QUADRATIC-DIOPHANTINE-EQUATIONS      461
NP-complete problems, RECORD-ALLOCATION      463
NP-complete problems, SAT      446—456 458
NP-complete problems, SET-COVER      460
NP-complete problems, STRAIGHTLINE-PROGRAM-IN-EQUIVALENCE      461
NP-complete problems, SUBGRAPH-ISOMORPHISM      462
NP-complete problems, SUBSET-SUM      462
NP-complete problems, TASK-SEQUENCING      463
NP-complete problems, TRAVELING-VENDOR      462
NP-complete problems, VERTEX-COVER      459—460 462
NP-completeness      208 448 449 451 457—463
NP-hardness      449 451 457
NPSPACE      451
NTime      450
Numeral systems      408
One-One Reducibility      207—211
Oracles      197—200
Ordered pairs      2
Orderings      see also "Partial orders"
Orderings, $\mathscr{D}$-choice function      474 481
Orderings, Cartesian product      472 479
Orderings, continuous function space      488
Orderings, function space      473 480
Orderings, lexicographic      484
P      444—446 448 449 456 461
Pairing function theorem      60
Pairing functions      59—60 65 66 67 74—75 83 106 107 110 203 228 232 435
Palindromes      241 265
Papadimitriou, Christos H.      594
Parameter Theorem      85—88 92 93 96 99 209 225 226 229 231 428 435
Parameter theorem, relativized      205—206 209
Parsing      324—326
Partial orders      472—475 see
Partial orders, bottom elements of      471 477
Partial orders, bounded-complete      485 494
Partial orders, chains in      477 499
Partial orders, ideal completions of      483
Partial orders, ideals of      482—483 546—556
Partial orders, isomorphic      485 486 493 544
Partial orders, principal ideals of      482
Pascal      279 323 326 438
Pigeon-hole principle      260 264 266 451
Polynomial-time computability      445
Polynomial-time decidability      444
Polynomial-time reducibility      208 448—449 457
Polynomials      441 442
Post Correspondence Problem      181—186 299—301 322
Post correspondence system      181 300
Post Words      171—175 177 187
Post — Turing programs      129—144 145 149 150 161 200
Post's lemma      177
Post's theorem      217—224 228
Post, Emil L.      129 178 181
Power sets      472
PRC classes      42—44 49—56 62 63 79 84 199
Predecessor function      46
Predicate logic      375—415
predicates      5—7 10 34—35 68 217—224 419
Predicates, admissible      499 502 537
Predicates, arithmetic      223—224
Predicates, computable      34—35 50 68 85
Predicates, primitive recursive      49—51 78 187 259—260
Predicates, recursive      419
Prenex normal form      384
Prenex sentences      384
Prime numbers      8 54 56—57 69 265 267 588
productions      see "Context-free grammars productions "Semi-Thue
Productions, null      269
Program verification      536
Programming systems      88
Programming systems, acceptable      88 105 128 144 153
Programs      17—28 65—67 197 see
Programs, as a data structure system      542
Programs, computations of      27
Programs, correct      536
Programs, for string computations      121—26
Programs, functions computed by      19 22—24 28—32 198
Programs, G-computations of      198 201
Programs, instantaneous descriptions of      27
Programs, length of      26
Programs, numbers of      65—67 68 70 74—76 86 89 90 95—97 97—105 201 224 225
Programs, snapshots of      27—28 29 70 74—76 197—198 420
Programs, states of      26 197
Programs, straightline      32
Programs, universal      70
Programs, with oracles      197—198
Projection functions      42 478
PROLOG      403
Proof by contradiction      8—9
Proofs      8
Propositional calculus      347—373
Propositional connectives      347
Propositional variables      347
PSPACE      450 451
Pumping lemma      260—262 264 267 see
Pure literal rule      362 363
Pushdown automata      308—323
Pushdown automata, atomic      314 315 316
Pushdown automata, computations by      311—323
Pushdown automata, deterministic      311 313 315
Pushdown automata, generalized      321
Pushdown automata, languages accepted by      311—323
Pushdown automata, nondeterministic      312 315
Pushdown automata, transitions of      310
Quadruples      145 330—333 338 454—455
Quantification theory      375—415
Quantifiers      7—8
Quantifiers, alternating      223
Quantifiers, bounded      7 53—55
Quantifiers, in predicate logic      376
Quintuples      149
r.e. languages      154—157 161 188 189 327 344 371 391—392 407—408
r.e. sets      78—85 88 90—95 209—211 231 391 407 408 409 592
r.e. sets, relative to an oracle      211—215
Rates of growth      439—443
Recursion      40 41 44 45 76 77 100 200 348 496 501 576
Recursion equations      40 41 44 45 46 47 62 63 100 104 309 314 505 508 see
Recursion theorem      97—105 111 428 431 see
Recursion theorem, first      501 503
Recursion theorem, second      501
Recursion theory      31 see
Recursion, course-of-values      62 109
Recursion, primitive      40 41 100 106 108
Recursion, simultaneous      62
Recursion, unnested double      63
Recursive function theory      see "Computability theory"
Recursive isomorphisms      231—234
Recursive operators      503
Recursive permutations      231—234
Recursive relatedness theorem      422 424 425 437
Recursively enumerable languages      see "r.e. languages"
Recursively enumerable sets      see "r.e. sets"
Redexes      559
Reducibilities      90—95 96 207—211 see "One-one "Polynomial-time
Reducibilities, completeness with respect to      92—93 208 210
Regular expressions      256—260
Regular grammars      280—285 327
Regular languages      237—267 280—285 292 304 306 327—328 450 see
Regular languages, and finite automata      237—242
Regular languages, and nondeterministic finite automata      242—247
Regular languages, closure properties for      249—260
Regular languages, examples of      247—249
Regular languages, infinite      261
Regular languages, represented by regular expressions      257
Regular languages, spanning sets for      263—267
Relation symbols      375
Relativization      199
Relativization of computability      198
Relativization of enumeration theorem      213
Relativization of parameter theorem      205—206
Relativization of recursive enumerability      211—215
Relativization of step-counter theorem      202—204
Relativization of universality theorem      201—202
Remainder      56 114
Representable elements      see "W-structures representable
Resolution in predicate logic      400—404
Resolution in propositional calculus      367—370 393 402 444
Resolution, derivations      367 402
Resolution, refutations      367 402
Resolvents      367
Rewrite rules      169 559 see
Rewriting strategies      559 560 564—565
Rice — Shapiro theorem      231
Rice's theorem      95—97 103 230—231
Right quotients      266 297
Robinson's general resolution theorem      402
Rogers, Hartley      594
Rooted sentences      412—414
S-m-n theorem      see "Parameter theorem"
SAT      446—456 458
Satisfiability, finite      370
Satisfiability, in predicate logic      380 383 384 385 389—391 394 411
Satisfiability, problem      358
Satisfiability, truth-functional      348—352 352—353 355—356 358 364 366—367 372 389—391 405 444 446—456
scaling factors      421
Schmidt, David      594
Scott domains      494
Self-embedding grammars      284
Self-reference      98 99
Self-reproducing program      100
Semantics      see also "Meaning functions"
Semantics, denotational      468 499 505—556
Semantics, of $\mathscr{S}$ programs      26—28
Semantics, of formulas in predicate logic      377—382
Semantics, of programming languages      467—468
Semantics, of propositional formulas      348
Semantics, of regular expressions      257
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå