Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Davis M., Sigal R., Weyuker E. — Computability, complexity, and languages: Fundamentals of theoretical computer science
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Computability, complexity, and languages: Fundamentals of theoretical computer science
Àâòîðû: Davis M., Sigal R., Weyuker E.
Àííîòàöèÿ: This introductory text covers the key areas of computer science, including recursive function theory, formal languages, and automata. It assumes a minimal background in formal mathematics. The book is divided into five parts: Computability, Grammars and Automata, Logic, Complexity, and Unsolvability. * Computability theory is introduced in a manner that makes maximum use of previous programming experience, including a "universal" program that takes up less than a page.* The number of exercises included has more than tripled.* Automata theory, computational logic, and complexity theory are presented in a flexible manner, and can be covered in a variety of different arrangements.
ßçûê:
Ðóáðèêà: Computer science /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Èçäàíèå: 2-nd edition
Ãîä èçäàíèÿ: 1994
Êîëè÷åñòâî ñòðàíèö: 628
Äîáàâëåíà â êàòàëîã: 30.03.2014
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Induction, structural 500—501 516 517 518 534 535 558 567 571
inf 225
Initial functions 42 76 108
Instantaneous descriptions 27 see
instructions 17—18 26 65—67 197
Instructions, conditional branch 18 35
Instructions, decrement 18
Instructions, increment 18
Instructions, labeled 26
Instructions, numbers of 65—67 74 201
Instructions, of programs 122
Instructions, of Post — Turing programs 129
Instructions, oracle 197—198 201
Instructions, unlabeled 26
Instructions, while 103
Interpretations, continuous 513 539
Interpretations, for predicate logic vocabularies 377 382 411
Interpretations, for typed vocabularies 512—513 539 546
Interpretations, Herbrand ideal 546
interpreters 70
Intractability 444 457 459
Isomorphisms 485
Iteration theorem see "Parameter theorem"
Jech, Thomas 594
Johnson, David S. 593
Jumps of sets 213
Kleene's hierarchy theorem 216
Kleene's theorem 253—260
Kuroda, S.Y. 331 339
l'Hospital's rule 442
labels 18 25
Landweber, P.S. 331
Languages 4 see
Languages, accepted by deterministic Turing machines 189
Languages, accepted by finite automata 239
Languages, accepted by linear bounded automata 330—337
Languages, accepted by nondeterministic finite automata 243
Languages, accepted by nondeterministic Turing machines 160—161 186 189
Languages, accepted by pushdown automata 311—323
Languages, accepted by Turing machines 153—157 189
Languages, generated by grammars 186 189 270 327—328
Languages, in NP see "NP"
Languages, inherently ambiguous 301
Languages, NP-complete see "NP-completeness"
Languages, NP-hard 449
Languages, polynomial-time decidable see "P"
Languages, recursive 156 190 328 446
Languages, recursively enumerable see "r.e. languages"
Languages, spanning sets for 263
Lattices 485 502
Lazy functional languages 553
Least upper bounds 476
Lee, R.C.T. 593
Lemmas 8
Lewis, Harry R. 594
Lexical analysis 323
Linear bounded automata 330—343
Linear bounded automata, deterministic 336 337 343
Linears orders 472 see
Linked conjunct procedures 400
Lisp 507
Lists, finite 541 552
Lists, infinite 553 588—590
Lists, prefix 553
Literals 354 447—448
Loeckx, Jacques 594
Logic see "Propositional calculus" "Quantification
Logic programming languages 403
Logical consequence 382—388
Loveland, Donald W. 594
m-completeness 92 93 97 210 217
Machtey, Michael 427 594
Macro expansions 20—24 33 35 121—123
macros 20 32—37 122—123 127
Macros for Post — Turing programs 136 137
Many-one reducibility 90—95 207—211
Markov, A.A. 178
Mates 355 357—358 366—367 397—398 399 see
Meaning functions, denotational 527 533 536 557 573—574 586
Meaning functions, operational 566 573—574 585—586
Metavariables 506
Minimal unsatisfiability 366—367 392 395 see truth
Minimalization 55—59 75 76 77 200 578
Minimalization, bounded 55—58
Minimalization, proper 77
Minimalization, unbounded 57—58
Models 380 382 384 385 406 412
Models, countable 406
Myhill — Nerode theorem 263—264
Myhill, John 232 263
n-tuples 2
Natural numbers 1
NDFA 243 see nondeterministic"
Nerode, Anil 263
Normal Form Theorem 75
Normal processes 192—195
Normal productions 193
NP 446—451 456 457—463
NP-complete problems, 2-COLORABILITY 461
NP-complete problems, 2-SAT 461—462
NP-complete problems, 3-DIMENSIONAL-MATCHING 460
NP-complete problems, 3-SAT 457—458 460 461 462
NP-complete problems, CHROMATIC-NUMBER 461 462
NP-complete problems, COMPLETE-SUBGRAPH 458—459 462
NP-complete problems, EXACT-COVER 462
NP-complete problems, HALF-SAT 456
NP-complete problems, HAMILTONIAN-CIRCUIT 460 462
NP-complete problems, INTEGER-PROGRAMMING 460
NP-complete problems, KNAPSACK 463
NP-complete problems, LONGEST-COMMON-SUBSEQUENCE 462
NP-complete problems, MAX-CLIQUE 459
NP-complete problems, MULTIPROCESSOR-SCHEDULING 463
NP-complete problems, PARTITION 460 462 463
NP-complete problems, QUADRATIC-DIOPHANTINE-EQUATIONS 461
NP-complete problems, RECORD-ALLOCATION 463
NP-complete problems, SAT 446—456 458
NP-complete problems, SET-COVER 460
NP-complete problems, STRAIGHTLINE-PROGRAM-IN-EQUIVALENCE 461
NP-complete problems, SUBGRAPH-ISOMORPHISM 462
NP-complete problems, SUBSET-SUM 462
NP-complete problems, TASK-SEQUENCING 463
NP-complete problems, TRAVELING-VENDOR 462
NP-complete problems, VERTEX-COVER 459—460 462
NP-completeness 208 448 449 451 457—463
NP-hardness 449 451 457
NPSPACE 451
NTime 450
Numeral systems 408
One-One Reducibility 207—211
Oracles 197—200
Ordered pairs 2
Orderings see also "Partial orders"
Orderings, -choice function 474 481
Orderings, Cartesian product 472 479
Orderings, continuous function space 488
Orderings, function space 473 480
Orderings, lexicographic 484
P 444—446 448 449 456 461
Pairing function theorem 60
Pairing functions 59—60 65 66 67 74—75 83 106 107 110 203 228 232 435
Palindromes 241 265
Papadimitriou, Christos H. 594
Parameter Theorem 85—88 92 93 96 99 209 225 226 229 231 428 435
Parameter theorem, relativized 205—206 209
Parsing 324—326
Partial orders 472—475 see
Partial orders, bottom elements of 471 477
Partial orders, bounded-complete 485 494
Partial orders, chains in 477 499
Partial orders, ideal completions of 483
Partial orders, ideals of 482—483 546—556
Partial orders, isomorphic 485 486 493 544
Partial orders, principal ideals of 482
Pascal 279 323 326 438
Pigeon-hole principle 260 264 266 451
Polynomial-time computability 445
Polynomial-time decidability 444
Polynomial-time reducibility 208 448—449 457
Polynomials 441 442
Post Correspondence Problem 181—186 299—301 322
Post correspondence system 181 300
Post Words 171—175 177 187
Post — Turing programs 129—144 145 149 150 161 200
Post's lemma 177
Post's theorem 217—224 228
Post, Emil L. 129 178 181
Power sets 472
PRC classes 42—44 49—56 62 63 79 84 199
Predecessor function 46
Predicate logic 375—415
predicates 5—7 10 34—35 68 217—224 419
Predicates, admissible 499 502 537
Predicates, arithmetic 223—224
Predicates, computable 34—35 50 68 85
Predicates, primitive recursive 49—51 78 187 259—260
Predicates, recursive 419
Prenex normal form 384
Prenex sentences 384
Prime numbers 8 54 56—57 69 265 267 588
productions see "Context-free grammars productions "Semi-Thue
Productions, null 269
Program verification 536
Programming systems 88
Programming systems, acceptable 88 105 128 144 153
Programs 17—28 65—67 197 see
Programs, as a data structure system 542
Programs, computations of 27
Programs, correct 536
Programs, for string computations 121—26
Programs, functions computed by 19 22—24 28—32 198
Programs, G-computations of 198 201
Programs, instantaneous descriptions of 27
Programs, length of 26
Programs, numbers of 65—67 68 70 74—76 86 89 90 95—97 97—105 201 224 225
Programs, snapshots of 27—28 29 70 74—76 197—198 420
Programs, states of 26 197
Programs, straightline 32
Programs, universal 70
Programs, with oracles 197—198
Projection functions 42 478
PROLOG 403
Proof by contradiction 8—9
Proofs 8
Propositional calculus 347—373
Propositional connectives 347
Propositional variables 347
PSPACE 450 451
Pumping lemma 260—262 264 267 see
Pure literal rule 362 363
Pushdown automata 308—323
Pushdown automata, atomic 314 315 316
Pushdown automata, computations by 311—323
Pushdown automata, deterministic 311 313 315
Pushdown automata, generalized 321
Pushdown automata, languages accepted by 311—323
Pushdown automata, nondeterministic 312 315
Pushdown automata, transitions of 310
Quadruples 145 330—333 338 454—455
Quantification theory 375—415
Quantifiers 7—8
Quantifiers, alternating 223
Quantifiers, bounded 7 53—55
Quantifiers, in predicate logic 376
Quintuples 149
r.e. languages 154—157 161 188 189 327 344 371 391—392 407—408
r.e. sets 78—85 88 90—95 209—211 231 391 407 408 409 592
r.e. sets, relative to an oracle 211—215
Rates of growth 439—443
Recursion 40 41 44 45 76 77 100 200 348 496 501 576
Recursion equations 40 41 44 45 46 47 62 63 100 104 309 314 505 508 see
Recursion theorem 97—105 111 428 431 see
Recursion theorem, first 501 503
Recursion theorem, second 501
Recursion theory 31 see
Recursion, course-of-values 62 109
Recursion, primitive 40 41 100 106 108
Recursion, simultaneous 62
Recursion, unnested double 63
Recursive function theory see "Computability theory"
Recursive isomorphisms 231—234
Recursive operators 503
Recursive permutations 231—234
Recursive relatedness theorem 422 424 425 437
Recursively enumerable languages see "r.e. languages"
Recursively enumerable sets see "r.e. sets"
Redexes 559
Reducibilities 90—95 96 207—211 see "One-one "Polynomial-time
Reducibilities, completeness with respect to 92—93 208 210
Regular expressions 256—260
Regular grammars 280—285 327
Regular languages 237—267 280—285 292 304 306 327—328 450 see
Regular languages, and finite automata 237—242
Regular languages, and nondeterministic finite automata 242—247
Regular languages, closure properties for 249—260
Regular languages, examples of 247—249
Regular languages, infinite 261
Regular languages, represented by regular expressions 257
Regular languages, spanning sets for 263—267
Relation symbols 375
Relativization 199
Relativization of computability 198
Relativization of enumeration theorem 213
Relativization of parameter theorem 205—206
Relativization of recursive enumerability 211—215
Relativization of step-counter theorem 202—204
Relativization of universality theorem 201—202
Remainder 56 114
Representable elements see "W-structures representable
Resolution in predicate logic 400—404
Resolution in propositional calculus 367—370 393 402 444
Resolution, derivations 367 402
Resolution, refutations 367 402
Resolvents 367
Rewrite rules 169 559 see
Rewriting strategies 559 560 564—565
Rice — Shapiro theorem 231
Rice's theorem 95—97 103 230—231
Right quotients 266 297
Robinson's general resolution theorem 402
Rogers, Hartley 594
Rooted sentences 412—414
S-m-n theorem see "Parameter theorem"
SAT 446—456 458
Satisfiability, finite 370
Satisfiability, in predicate logic 380 383 384 385 389—391 394 411
Satisfiability, problem 358
Satisfiability, truth-functional 348—352 352—353 355—356 358 364 366—367 372 389—391 405 444 446—456
scaling factors 421
Schmidt, David 594
Scott domains 494
Self-embedding grammars 284
Self-reference 98 99
Self-reproducing program 100
Semantics see also "Meaning functions"
Semantics, denotational 468 499 505—556
Semantics, of programs 26—28
Semantics, of formulas in predicate logic 377—382
Semantics, of programming languages 467—468
Semantics, of propositional formulas 348
Semantics, of regular expressions 257
Ðåêëàìà