Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Crowell B. — The modern revolution in physics | |
Misner C.W., Thorne K.S., Wheeler J.A. — Gravitation | see “Interval”, “Lorentz” |
Greiner W., Muller B., Rafelski J. — Quantum electrodynamics of strong fields | 284 |
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 258.A |
Morse P., Feshbach H. — Methods of Theoretical Physics (part 1) | 93 |
Morse P., Feshbach H. — Methods of Theoretical Physics (part 2) | 93 |
Lee J.M. — Differential and Physical Geometry | 382 |
Felsager B. — Geometry, particles and fields | 293 |
Goldstein H., Poole C., Safko J. — Classical mechanics | 279, 310, 32] |
Liboff R. — Kinetic Theory | 454 |
Dittrich W., Reuter M. — Classical and quantum dynamics | 15 |
Parisi G. — Statistical field theory | 298, n. 1 |
Hand L.N., Finch J.D. — Analytical Mechanics | 527, 331 |
Torretti R. — Relativity and Geometry | 96 |
Devlin K.J. — Language of Mathematics: Making the Invisible Visible | 327 |
Araki H. — Mathematical Theory of Quantum Fields | 59 |
Greiner W. — Classical mechanics. Point particles and relativity | 427 |
Zwiebach B. — A First Course in String Theory | 25 |
Henneaux M., Teitelboim C. — Quantization of Gauge Systems | 400 |
Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 241, 536 |
Ito K. — Encyclopedic Dictionary of Mathematics | 258.A |
Konopinski E.J. — Electromagnetic fields and relativistic particles | 394, 414—415 |
Thaller B. — The Dirac equation | 303 |
Heitler W. — The Quantum Theory of Radiation | 9 |
Poisson E. — A relativists toolkit | 7, 8, 19, 20, 24, 25, 36, 41, 43, 85, 91, 99, 100, 104, 116, 147, 158, 168, 181, 188, 192 |
Raine D.J., Thomas E.G. — An Introduction to the Science of Cosmology | 62, 63 |
Stewart J. — Advanced general relativity | 52 |
Thirring W.E. — Classical Mathematical Physics: Dynamical Systems and Field Theories | 519 |
Hartle J.B. — Gravity: An Introduction to Einstein's General Relativity | see also “World lines, proper time along” |
Fulling S. — Aspects of Quantum Field Theory in Curved Spacetime | 201 |
O'Neill B. — Semi-Riemannian Geometry: With Applications to Relativity | 163 |
Dubrovin B.A., Fomenko A.T., Novikov S.P. — Modern Geometry - Methods and Applications. Part 1. The Geometry of Surfaces, Transformation Groups and Fields | 52, 327, 418 |
Woodhouse N.M.J. — Special Relativity | 5, 25 |
Nayfeh M.H., Brussel M.K. — Electricity and Magnetism | 563 |
Kleppner D., Kolenkow R. — An introduction to mechanics | 468, 524 |
Hughston L.P., Tod K.P., Bruce J.W. — An Introduction to General Relativity | 31 |
Ludvigsen M. — General relativity. A geometric approach | 17 |
Visser M. — Lorentzian wormholes. From Einstein to Hawking | 10, 14, 117, 135, 136, 336 |
Collins P.D., Squires E.J., Martin A.D. — Particle Physics and Cosmology | 269, 319 |
Jackson J.D. — Classical electrodynamics | 369 |
Griffits D. — Introduction to elementary particles | 87 |
Lang K.R. — Astrophysical Formulae: Space, Time, Matter and Cosmology, Vol. 2 | 148, 150 |
Collins P.D.B., Martin A.D., Squires E.J. — Particle Physics and Cosmology | 269, 319 |
Carrol B.W., Ostlie D.A. — An introduction to modern astrophysics | 93, 625 |
Kompaneyets A.S., Yankovsky G. — Theoretical Physics | 205 |
Shore S.N. — The Tapestry of Modern Astrophysics | 79 |
O'Neill B. — The Geometry of Kerr Black Holes | 34 |
Berry M. — Principles of cosmology and gravitation | see "Time" |
Volovik G. — Artificial black holes | 383 |
Weyl H. — Philosophy of mathematics and natural science | 103 |
Siegel W. — Fields | IA4 |
Auletta G. — Foundations and Interpretation of Quantum Mechanics | 446 |
Mihalas D., Mihalas B.W. — Foundations of Radiation Hydrodynamics | 133 |
Weinberg S. — Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity | 26, 30, 71, 76—77, 186, 413 |
Fernow R.C. — Introduction to experimental particle physics | 6 |
Bayin S.S. — Mathematical Methods in Science and Engineering | 204, 205 |
Arya A.P. — Introduction to Classical Mechanics | 680, 685 |
Carmeli M. — Classical Fields: General Gravity and Gauge Theory | 11, 231, 559 |
Landau L.D., Lifshitz E.M. — The classical theory of fields | 7 |
Lee J.M. — Differential and physical geometry | 382 |
Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity | 76 |
Frenkel J. — Wave Mechanics: Advanced General Theory | 10 |
Bondi H. — Cosmology | 70, 145 |
Wilson W. — Theoretical physics - Relativity and quantum dynamics | 31, 71 |
Morse P.M. — Methods of theoretical physics | 93 |
Taylor M.E. — Partial Differential Equations. Nonlinear Equations (vol. 3) | 525 |
Siegel W. — Fields | IA4 |
Ugarov V.A. — Special Theory of Relativity | 88, 112 |
Avramidi I.G. — Heat Kernel and Quantum Gravity | 3, 17 |
Szabo R.J. — An Introduction to String Theory and D-Brane Dynamics | 9 |
Richards P.I. — Manual of Mathematical Physics | 117 |
Wolfgang K. H. Panofsky, Phillips Panofsky, Melba Panofsky — Classical Electricity and Magnetism | 290 |
Thaller B. — The Dirac equation | 303 |
Hugh D. Young, Roger A. Freedman — University physics with modern physics | 1275—1278 |
Choquet-Bruhat Y. — General Relativity and the Einstein Equations | 26, 39 |
Leighton R.B. — Principles of Modern Physics | 31 |
Frankel T. — The geometry of physics: an introduction | 193, 292 |
0 — Holt Physics | 852 |
Taylor E.F. — Exploring Black Holes: Introduction to General Relativity | 1-2, see also "Wristwatch time" |
Schutz B.F. — A first course in general relativity | 19, 56, 244, 280, 288, 312, 315, 328 |
Anderson J.L. — Principles of Relativity Physics | 159 |
Synge J.L., Griffith B.A. — Principles of Mechanics | 491, 492, 498 |
Adams S. — Relativity: An Introduction to Space-Time Physics | 50, 66, 120, 158, 159 |
Wald R.M. — General Relativity | 44 |
Synge J.L. — Relativity: The Special Theory | 54 |
Hassani S. — Mathematical Methods: for Students of Physics and Related Fields | 239—24-0 |
Giles R. — Mathematical foundation of thermodynamics | 154 |
Frankel T. — The geometry of physics: An introduction | 193, 292 |
Berry M.V. — Principles of Cosmology and Gravitation | see "Time" |
Sexl R., Urbantke H.K. — Relativity, Groups, Particles. Special Relativity and Relativistic Symmetry in Field and Particle Physics | 32 |
Collins P.D.B., Martin A.D., Squires E.J. — Particle Physics and Cosmology | 269, 319 |
Stamatescu I., Seiler E. — Approaches to Fundamental Physics | 95, 98 |
Foster J., Nightingale J. — A Short Course in General Relativity (Longman mathematical texts) | xiii, 56—57, 71, 96, 98, 101, 105, 106, 150, 165, 170 |
Jackson J.D. — Classical electrodynamics | 528 |
Thirring W., Harrell E.M. — Classical mathematical physics. Dynamical systems and field theory | 519 |
Kittel C., Knight W., Ruderman M. — Berkeley physics course 1. Mechanics | 333—339, 352 |
Schiffer M.M. — The role of mathematics in science | 148—150 |
Jost J. — Bosonic Strings: A mathematical treatment | 5 |