| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
| Wolf E.L. — Nanophysics and nanotechnology. An introduction to modern concepts in nanoscience | |
| Zeidler E. — Nonlinear Functional Analysis and its Applications IV: Applications to Mathematical Physic | see “Mean value” |
| Streater R.S., Wightman A.S. — PCT, Spin and Statistics, and All That | 106, 114 |
| Schweizer W. — Numerical quantum dynamics | 4 |
| Majid S. — Foundations of Quantum Group Theory | 182, 192, 200, 219, 456 |
| Atkins P.W., Friedman R.S. — Molecular Quantum Mechanics | 20 |
| Pugovecki E. — Quantum mechanics in hilbert space | 263, 277, see also Mean value theorem |
| Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications | 355 |
| Honerkamp J. — Statistical Physics | 18 |
| Kohonen T. — Self-organizing maps | 31 |
| Browne M.E. — Schaum's outline of theory and problems of physics for engineering and science | 415 |
| Prugovecki E. — Quantum Mechanics in Hilbert Space | 263, 277 (see also “Mean value theorem”) |
| Araki H. — Mathematical Theory of Quantum Fields | 7 |
| Chow W.W., Koch S.W. — Semiconductor-laser fundamentals | 32 |
| Gershenfeld N. — The Nature of Mathematical Modelling-Neil Gershenfeld | 45 |
| Greiner W. — Quantum mechanics. An introduction | 43, 70, 255, 439 |
| Thaller B. — Visual quantum mechanics | 68, 89 |
| Barlow R. — Statistics: A Guide and Reference to the Use of Statistical Methods in the Physical Sciences | 22—24 |
| Alberti P.M., Uhlmann A. — Stochasticity and Partial Order | 59 |
| Walecka J.D. — Fundamentals of statistical mechanics | 159 |
| Streater R.F. (Ed) — Mathematics of Contemporary Physics | 3, 146, 212 |
| Rammer J. — Quantum transport theory | 42 |
| Toda M., Kubo R., Saito N. — Statistical Physics I: Equilibrium Statistical Mechanics, Vol. 1 | 6 |
| Dorlas T.C. — Statistical mechanics, fundamentals and model solutions | 232, 242 |
| Griffits D.J. — Introduction to quantum mechanics | 7, 9, 16 |
| Eddington A. — Relativity Theory of Protons and Electrons | 38, 149 |
| DeWitt B.S. — The global approach to quantum field theory (Vol. 1) | 152 |
| Jahne B. — Digital Image Processing | 80 |
| Guimaraes A.P. — Magnetism and Magnetic Resonance in Solids | 67, 193, 258, 275 |
| Thaller B. — The Dirac equation | 6, 21 |
| Fulling S. — Aspects of Quantum Field Theory in Curved Spacetime | 3, 7, 92, 96, 103, 127, 149, 185—188, 207—208, 211—212, 241, 280—282 |
| Peleg Y., Pnini R., Zaarur E. — Schaum's outline of theory and problems of quantum mechanics | 89 |
| Schiff L.I. — Quantum mechanics | 24—27 |
| Englert B.G. (Ed) — Quantum Mechanics | 48, 93, 109—111, 140 |
| Griffits D. — Introduction to elementary particles | 151—152, 186 |
| Deligne P., Kazhdan D., Etingof P. — Quantum fields and strings: A course for mathematicians (Vol. 1) | 16, 495 |
| Bethe H.A., Salpeter E.E. — Quantum Mechanics of One-and-Two-Electron Atoms | 162, 164 |
| Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory | 109, 113—114, 116, 138, 591, 593 (see also “Vacuum expectation value”) |
| Wolf E.L. — Nanophysics and nanotechnology: an introduction to modern concepts in nanoscience | 78 |
| Eddington A.S. — Philosophy of Physical Science | 174 |
| Slichter Ch.P. — Principles of magnetic resonance. With examples from solid state physics | 12 |
| Avery J. — Creation and Annihilation Operators | 38 |
| Stahl A. — Physics with tau leptons | 38 |
| ter Haar D. — Elements of Statistical Mechanics | 216 |
| Ambjorn J., Durhuus B., Jonsson T. — Quantum Geometry: A Statistical Field Theory Approach | 237, 252 |
| Shankar R. — Principles of quantum mechanics | 127 |
| Gilmore R. — Lie Groups, Lie Algebras and Some of Their Applications | 163, 171, 496—498 |
| Basdevant J.-L., Dalibard J. — Quantum Mechanics | 20, 42, 93, 102 |
| Auletta G. — Foundations and Interpretation of Quantum Mechanics | 54, 337 |
| Roe B.P. — Probability and Statistics in Experimental Physics | 6, 7, 25, 76, 133, 136, 137, 163, 164, 184 |
| Measures R.M. — Laser remote sensing. Fundamentals and applications | 65 |
| Amit D.J. — Field theory, the renormalization group, and critical phenomena | 324, 368—369 |
| Accardi L., Lu Y.G., Volovich I. — Quantum Theory and Its Stochastic Limit | 57 |
| Perina J., Hradil Z., Jurco B. — Quantum optics and fundamentals of physics | 10 |
| Fernow R.C. — Introduction to experimental particle physics | 388 |
| Gottfried K., Weisskopf V.F. — Concepts of Particle Physics | 10 |
| Wakimoto M. — Infinite-Dimensional Lie Algebras | 184 |
| Streater R.F., Wightman A.S. — PCT, spin and statistics and all that | 106, 114 |
| Nouredine Z. — Quantum Mechanics: Concepts and Applications | 165 |
| Barnett S.M., Radmore P.M. — Methods in Theoretical Quantum Optics | 3, 5, 6, 8, 15, 16, 34, 36, 50 |
| Minoru Wakimoto — Infinite-Dimensional Lie Algebras | 184 |
| Mandel L., Wolf E. — Optical Coherence and Quantum Optics | 11, 474 |
| Atkins P. — Molecular Quantum Mechanics | 17 |
| Lena P., Lebrun F. — Observational Astrophysics (Astronomy and Astrophysics Library Series) | 437 |
| Amrein W.O., Sinha K.B., Jauch J.M. — Scattering Theory in Quantum Mechanics: Physical Principles and Mathematical Methods | 103, 152, 156 |
| Kemble E. C. — The fundamental principles of quantum mechanics | (see Mean value, statistical) |
| Podgorsak E. — Radiation Physics for Medical Physicists | 36 |
| Ambjorn J., Durhuus B., Jonsson T. — Quantum Geometry. A Statistical Field Theory Approach | 237, 252 |
| Thaller B. — The Dirac equation | 6, 21 |
| Mathews J., Walker R.L. — Mathematical methods of physics | 381 |
| Atkins P.W., Friedman R.S. — Molecular Quantum Mechanics | 17 |
| Hobbie R., Roth B. — Intermediate Physics for Medicine and Biology, | 367 |
| Mandl F. — Quantum mechanics | 63, 66—68, 71, 81, 115 |
| Cvitanovic P., Artuso R., Dahlqvist P. — Classical and quantum chaos | 121, 132 |
| HarrisR. — Nonclassical physics: beyond Newton's view | 160—164, 266 |
| Deligne P., Etingof P., Freed D. — Quantum fields and strings: A course for mathematicians, Vol. 2 (pages 727-1501) | 16, 495 |
| Deligne P., Kazhdan D., Etingof P. — Quantum fields and strings: A course for mathematicians | 16, 495 |
| Ashby N., Miller S.C. — Principles of modern physics | 20, 32 |
| Greiner W. — Relativistic quantum mechanics. Wave equations | 35 |
| Tsang L., Kong J.A. — Scattering of electromagnetic waves (Vol 3. Advanced topics) | 205 |
| Streater R.F. — Statistical Dynamics: A Stochastic Approach to Nonequilibrium Thermodynamics | 134 |
| Schiff L.I. — Quantum Mechanics | 27, 167, 378 |
| Adler S.L. — Quaternionic Quantum Mechanics and Quantum Fields | 28, 47n.19, 71—73 |
| Hartmann A.K., Rieger H. — Optimization Algorithms in Physics | 74 |
| Haag R. — Local quantum physics: fields, particles, algebras | 5, 7 |
| Yariv A. — Quantum Electronics | 3, 5 |
| Williams C.P., Clearwater S.H. — Explorations in quantum computing | 108 |
| Hassani S. — Mathematical Methods: for Students of Physics and Related Fields | 790 |
| Breuer H.-P., Petruccione F. — The Theory of Open Quantum Systems | 9, 297 |
| ter Haar D. — Elements of Statistical Mechanics | 216 |
| Kanwal R.P. — Generalized functions: Theory and technique | 396 |
| Bernard L. Cohen — Concepts of Nuclear Physics | 29 |
| Ehrenberg W. — Electric Conduction in Semiconductors and Metals | 94, 182 |
| Krane K.S. — Introductory nuclear physics | 13 |
| Meyer-Ortmanns H., Reisz T. — Principles of phase structures in particle physics | 27, 205 |
| Mathews J., Walker R.L. — Mathematical Methods of Physics | 381 |
| Perina J., Hradil Z., Jurco B. — Quantum optics and fundamentals of physics | 10 |
| Badii R., Politi A. — Complexity: Hierarchical structures and scaling in physics | 86 |
| Honerkamp J. — Statistical physics: an advanced approach with applications | 18 |
| Liboff R.L. — Introductory quantum mechanics | 73 |