Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Agarwal R.P. — Difference Equations and Inequalities. Theory, Methods and Applications. | 27 |
Kedlaya K.S., Poonen B., Vakil R. — The William Lowell Putnam Mathematical Competition 1985–2000: Problems, Solutions, and Commentary | 117, 198 |
Hunter J.K., Nachtergaele B. — Applied Analysis | 32, 385 |
Rudin W. — Principles of Mathematical Analysis | 108, 235 |
Falconer K. — Fractal Geometry. Mathematical Foundations and applications | 9 |
Keisler H.J. — Elementary calculus | 168 |
Davenport H. — Analytic methods for Diophantine equations and Diophantine inequalities | 51 |
Brauer F., Nohel J.A. — The qualitative theory of ordinary differential equations | 122, 160, 173, 184, 240 |
Latrve D.R., Kreider D.L., Proctor T.G. — Hp-48G/Gx Investigations in Mathematics | 96 |
Golub G.H., Ortega J.M. — Scientific Computing and Differential Equations : An Introduction to Numerical Methods | 309, 310 |
Crisfield M.A. — Non-Linear Finite Element Analysis of Solids and Structures. Vol. 2: Advanced Topics | 65 |
Henrici P. — Elements of numerical analysis | 64, 70, 75, 80, 94, 188, 310 |
Silverman J.H. — The arithmetic of elliptic curves | 243, 260 |
Roberts A.W., Varberg D.E. — Convex Functions | 71 |
Conway J.B. — Functions of One Complex Variable | 253 |
Springer G. — Introduction to Riemann Surfaces | 192 |
Weinberger H.F. — First course in partial defferential equations with complex variables and transform methods | 103, 196 |
Smirnov V.I. — Higher mathematics. Vol.1 | 242, 243 |
Pugovecki E. — Quantum mechanics in hilbert space | 461 |
Kriegl A., Michor P.W. — The Convenient Setting of Global Analysis | 10 |
Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications | 415 |
Halmos P.R. — Measure Theory | 114 |
Estep D.J. — Practical Analysis in One Variable | 269, 451, 456 |
Lovelock D., Mendel M., Wright A.L. — Introduction to the Mathematics of Money: Saving and Investing | 96 |
Kurtz D.S., Swartz C.W. — Theories of Integration | 48 |
Borwein P., Choi S., Rooney B. — The Riemann Hypothesis | 17, 154 |
Edminister J.A. — Schaum's outline of electromagnetics | 116 |
Coffin D. — Calculus on the HP-48G/GX | 209 |
Debnath L. — Linear Partial Differential Equations for Scientists and Engineers | 338, 618 |
Prugovecki E. — Quantum Mechanics in Hilbert Space | 490 |
Hasumi M. — Hardy Classes on Infinitely Connected Riemann Surfaces | IX.2D |
Tanigawa Y. — Number Theory: Tradition and Modernization | 32 |
Aikawa H., Essen M. — Potential Theory - Selected Topics | 140 |
Allouche J.-P., Shallit J. — Automatic Sequences: Theory, Applications, Generalizations | 42 |
Hijab O. — Introduction to Calculus and Classical Analysis (Undergraduate Texts in Mathematics) | 66 |
Pugh C.C. — Real Mathematical Analysis | 141, 277, 278 |
Pytlak R. — Numerical Methods for Optimal Control Problems with State Constraints | 16 |
Boothby W.M. — An introduction to differentiable manifolds and riemannian geometry | 23 |
Morris S.A. — Topology without tears | 122 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1 | 464, 955 |
Jost J., Simha R.T. — Compact Riemann Surfaces: An Introduction to Contemporary Mathematics | 106, 107, 114 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 57 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1 | 57 |
Devaney R.L. — An introduction to chaotic dynamical systems | 10 |
Wyld H.W. — Mathematical Methods for Physics | 444 |
Koblitz N. — p-adic numbers, p-adic analysis, and zeta-functions | 85 |
Khuri A.I. — Advanced calculus with applications in statistics | 99—100, 271 |
Spivak M. — Calculus | 178, 179 |
Poeschel J. — Inverse Spectral Theory | 131 |
Shreve S.E. — Stochastic Calculus for Finance 2 | 44, 100 |
Polya G. — Problems and Theorems in Analysis: Theory of Functions. Zeros. Polynomials. Determinants. Number Theory. Geometry | V 95 51, V 98 52, V 99 52, VI 59 80, VI 109 90 |
Lang S.A. — Undergraduate Analysis | 71, 475 |
Sinha S.M. — Mathematical Programming: Theory and Methods | 24 |
Rall D. — Computational Solution to Nonlinear Operator Equations | 120 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 3 | 464, 955 |
Lin C.C., Segel L.A. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 571 |
Lang S. — Real Analysis | 106 |
Burn R.P. — Numbers and Functions: Steps to Analysis | 9.13, 9H |
Hardy G.H. — A course of pure mathematics | 214 et seq. |
Chipot M., Quittner P. — Stationary Partial Differential Equations, Vol. 1 | 508 |
Zauderer E. — Partial Differential Equations of Applied Mathematics | 34, 496, 515 |
Kuznetsov N., Mazya V., Vainberq B. — Linear Water Waves: A Mathematical Approach | 22, 47, 148 |
Kress R., Gehring F.W. — Numerical Analysis | 99 |
Dieudonne J. — Foundation of Modern Analysis | 8.5 |
Pedregal P. — Introduction to Optimization | 91 |
Greenberg M.D. — Advanced engineering mathematics | 626, 638, 724, 728 |
Gong S., Gong Y. — Concise Complex Analysis | 3 |
Phillips G.M. — Interpolation and Approximation by Polynomials | 124 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 2 | 464, 955 |
Aubin T. — Nonlinear Analysis on Manifolds: Monge-Ampere Equations | 71 |
Weir A.J. — Lebesgue Integration and Measure | 237 |
Strichartz R.S. — The way of analysis | 160, 210, 248, 272, 436 |
Bamberg P.G., Sternberg Sh. — A Course in Mathematics for Students of Physics: Volume 1 | 219—222 |
Hu S.-T. — Elements of real analysis | 336 |
Aczel J. — Lectures on functional equations and their applications | 159 |
Feller W. — Introduction to probability theory and its applications (Volume II) | 109 |
Hamming R.W. — Numerical methods for scientists and engineers | 49 |
D'Angelo J.P., West D.B. — Mathematical Thinking: Problem-Solving and Proofs | 315, 7, 321, 33 |
Chan Man Fong C.F., De Kee D., Kaloni P.N. — Advanced Mathematics for Engineering and Sciences | 4 |
Antia H.M. — Numerical Methods for Scientists and Engineers | 172, 174, 279, 531 |
Bamberg P.G., Sternberg S. — A Course in Mathematics for Students of Physics, Vol. 1 | 219-222 |
Krantz S.G. — Handbook of Real Variables | 76 |
Kreyszig E. — Advanced engineering mathematics | 402, 434, 454 |
Bluman G.W. — Problem Book for First Year Calculus | 232, (VII.9), [1.26; 23; VII.18, 25, 32] |
Bertsekas D.P. — Constrained Optimization and Lagrange Multiplier Methods | 11 |
Bonar D.D., Khoury M.J. — Real Infinite Series | 60 |
Marsden J., Weinstein A. — Calculus unlimited | 93 |
Ash R.B. — Real Variables with Basic Metric Space Topology | 81, 83—85 |
Anderson G.A., Granas A. — Fixed Point Theory | 604 |
Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142) | 341 |
Boothby W.M. — An Introduction to Differentiable Manifolds and Riemannian Geometry | 23 |
Dieudonne J. — Foundation of Modern Analysis | 8.5 |
Balakrishnan N. (ed.), Rao C.R. (ed.) — Order Statistics - Theory and Methods | 471, 642 |
Moh T.T. — Algebra | 169 |
Bazaraa M.S., Sherali H.D., Shetty C.M. — Nonlinear Programming: Theory and Algorithms | 764 |
Hughes B.D. — Random walks and random enviroments (Vol. 1. Random walks) | 198, 383 |
van Dijk N. — Handbook of Statistics 16: Order Statistics: Theory & Methods | 471, 642 |
Bridges D.S. — Foundations Of Real And Abstract Analysis | 57 |
Balakrishnan N., Rao C.R. — Handbook of Statistics (Vol. 17): Order Statistics: Applications | 254, 265 |
Browder A. — Mathematical Analysis: An Introduction | 83, 185 |
Snyder V., Hutchinson J.I. — Differential And Integral Calculus | 75, 257 |
Schwartz M. — Principles of electrodynamics | 42 |
Argyros I. — Computational Theory of Iterative Methods | 9 |
Riley, Hobson — Mathematical Methods for Physics and Engineering | 57—58 |
Adler R.J. — Geometry of random fields | 102 |
Ortega J.M. — Numerical analysis: a second course | 141 |
David O.Tall — Advanced Mathematical Thinking | 218 |
Gloub G.H., Ortega J.M. — Scientific Computing and Differential Equations | 309, 310 |
Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 78 |
Vladimirov V. S. — Equations of mathematical physics | 283 |
McShane E.J., Botts T.A. — Real Analysis | 117, 121 |
Springer G. — Introduction to Riemann Surfaces | 192 |
Gelbaum B.R. — Problems in Real and Complex Analysis | s 2.2. 169 |
Porteous I.R. — Clifford Algebras and the Classical Groups | 211 |
Marsden J., Weinstein A. — Calculus 1 | 191 |
Carroll R.W. — Mathematical physics | 20 |
Lang S. — Undergraduate analysis | 71, 475 |
Katz V.J. — A History of Mathematics: An Introduction | 717, 719 |
Moh T.T. — Algebra | 169 |
Rosenhouse J. — The Monty Hall Problem: The Remarkable Story of Math's Most Contentious Brain Teaser | 2 |
Reithmeier E. — Periodic Solutions of Nonlinear Dynamical Systems: Numerical Computation, Stability, Bifurcation and Transition to Chaos | 49 |
Cloud M.J., Drachman B.C. — Inequalities: with applications to engineering | 24 |
Wait R. — The numerical solution of algebraic equations | 64 |
Ponstein J. — Nonstandart Analysis | 117 |
Driver R.D. — Ordinary and delay differential equations | 454 |
Franklin P. — Differential and integral calculus | 45, 447 |
John F. — Partial Differential Equations | 99, 104 |
Wait R. — Numerical solution of algebraic equations | 64 |
Lyons L. — All You Wanted to Know about Mathematics but Were Afraid to Ask - Mathematics for Science Students. Volume 1 | 242—244, 320 |
Burden R.L., Faires J.D. — Numerical analysis | 5 |
Marotto F. — Introduction to Mathematical Modeling Using Discrete Dynamical Systems | 123 |
Morrison T.M. — Functional Analysis: An Introduction to Banach Space Theory | 29 |
Sagle A. A. — Introduction to Lie groups and Lie algebras | 17 |
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 78 |
BertsekasD., Tsitsiklis J. — Neuro-Dynamic Programming (Optimization and Neural Computation Series, 3) | 464 |
Koblitz N. — P-adic Numbers, p-adic Analysis, and Zeta-Functions, 2nd ed. (Graduate Texts in Mathematics) | 85 |
Bhatia R. — Matrix Analysis | 303, 307, 312 |
D'Angelo J.P., West D.B. — Mathematical thinking: problem-solving and proofs | 315—317, 321, 332—333, 357, 397 |
Lin C., Segel L. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 571 |
Lin C., Segel L. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 571 |
Lin C., Segel L. — Mathematics applied to deterministic problems in the natural sciences | 571 |
Truss J.K. — Foundations of Mathematical Analysis | 157 |
Truss J. — Foundations of mathematical analysis | 157 |
J. K. Truss — Foundations of mathematical analysis MCet | 157 |
Souza P., Silva J., Souza P. — Berkeley Problems in Mathematics | 148, 152, 168, 176, 185, 206, 207 |
Souza P., Silva J., Souza P. — Berkeley Problems in Mathematics | 148, 152, 168, 176, 185, 206, 207 |