| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
| Heinbockel J.H. — Introduction to tensor calculus and continuum mechanics | 18, 42, 69 |
| Apostol T.M. — Calculus (vol 1) | 543 |
| Spiegel M.R. — Mathematical Handbook of Formulas and Tables | 49, 126 |
| Apostol T.M. — Calculus (vol 2) | 409 |
| Keisler H.J. — Elementary calculus | 769 |
| Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 90.C, App. A, Table 3.V |
| Borisenko A.I., Tarapov I.E. — Vector and Tensor Analysis with Applications | 82 |
| Hayek S.I. — Advanced mathematical methods in science and engineering | 628 |
| Ben-Israel A., Greville T. — Generalized inverses: Theory and applications | 284 |
| Hoffman J.D. — Numerical Methods for Engineers and Scientists | 563 |
| Felsager B. — Geometry, particles and fields | 290 |
| Smirnov V.I. — Higher mathematics. Vol.2 | 182 |
| Maple 8. Learning guide | 117 |
| Sadd M.H. — Elasticity: theory, applications, and numerics | 19 |
| Williamson R.E., Crowell R.H., Trotter H.F. — Calculus of vector functions | 192 |
| Chorin A., Marsden J. — A Mathematical Introduction to Fluid Mechanics | 45 |
| Becker A.A. — The Boundary Element Method in Engineering. A complete course | 19, 128, 131, 226 |
| Dill K.A., Bromberg S. — Molecular Driving Forces: Statistical Thermodynamics in Chemistry and Biology | 312 |
| Adams R.A. — Sobolev Spaces | 124 |
| Franklin P. — Fourier Methods | 130 |
| Boyd J.P. — Chebyshev and Fourier Spectral Methods | see polar coordinates |
| Sagan H. — Advanced Calculus of Real-Valued Functions of a Real Variable and Vector-Valued Functions of a Vector Variable | (437) |
| Coffin D. — Calculus on the HP-48G/GX | 238, 262, 266 |
| Lamb H. — Hydrodynamics | 157 |
| Shankar R. — Basic Training In Mathematics | 66 |
| Jackson D. — Fourier Series and Orthogonal Polynomials | 106, 109—114, 138—141 |
| McMano D., Topa D.M. — A Beginner's Guide to Mathematica | 437 |
| Agoshkov V.I., Dubovsky P.B. — Methods for Solving Mathematical Physics Problems | 58 |
| Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 260 |
| Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1 | 260 |
| Greiner W. — Classical mechanics. Point particles and relativity | 71, 73, 78, 80, 103 |
| Ayres F.J., Mendelson E. — Schaum's Outline of Calculus | 456 |
| Lin C.C., Segel L.A. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 565 |
| Coxeter H.S.M. — Introduction to Geometry | 323, 337—338 |
| Ito K. — Encyclopedic Dictionary of Mathematics | 90.C, App. A, Table 3.V |
| Menzel D.H. — Mathematical Physics | 182 |
| Sokolnikoff I.S. — Higher Mathematics for Engineers and Physicists | 152, 185, 190, 191, 378, 386, 434, 438 |
| Sokolnikoff I.S. — Mathematics of Physics and Modern Engineering | 359 |
| Pedregal P. — Introduction to Optimization | 143 |
| Greenberg M.D. — Advanced engineering mathematics | 751, 783, 803, 820, 835, 1077 |
| Apostol T.M. — Calculus: One-Variable Calculus with an Introduction to Linear Algebra, Vol. 1 | 543 |
| van de Hulst H.C. — Light Scattering by Small Particles | 298 |
| Wang Z.X., Guo D.R., Xia X.J. — Special Functions | 659 |
| Bao G., Cowsar L., Masters W. — Mathematical Modeling in Optical Science | 146 |
| Munkres J.R. — Analysis on manifolds | 151 |
| Love A.E.H. — A Treatise on the Mathematical Theory of Elasticity | 56, 90, 143, 164, 272, 274, 288 |
| Dutra S.M. — Cavity quantum electrodynamics | 49, 61 |
| Visser M. — Lorentzian wormholes. From Einstein to Hawking | 221 |
| Kalinins E.G. — Separation of Variables for Riemannian Spaces of Constant Curvature | 65 |
| Fomenko À.Ò., Mishehenko A.S. — A Short Course in Differential Geometry and Topology | 2, 8 |
| Charles S.Barrett — Structure of Metals | 106 |
| Betten J. — Creep Mechanics | 29 |
| Hanna J.R., Rowland J.H. — Fourier Series, Transforms, and Boundary Value Problems | 140 |
| Sernelius B.E. — Surface Modes in Physics | 271 |
| Asmar N.H. — Partial Differential Equations with fourier series and boundary value problems | 196 |
| Pipes L.A. — Applied Mathemattics for Engineers and Physicists | 356 |
| Stratton J.A. — Electromagnetic Theory | 198—199 |
| Audin M. — Torus Actions on Symplectic Manifolds | 64 |
| Spiegel M.R. — Schaum's mathematical handbook of formulas and tables | 49, 126 |
| Kreyszig E. — Advanced engineering mathematics | 587, A71 |
| Ding H., Chen W., Zhang L. — Elasticity of Transversely Isotropic Materials | 2, 4, 6, 7, 14, 18, 21, 31, 39, 51, 52, 147, 148, 158, 185, 191, 192, 194, 197, 214, 257, 283, 316, 382, 387, 388, 395 |
| Bird R.B., Armstrong R.C., Hassager O. — Dynamics of polymeric liquids (Vol. 1. Fluid mechanics) | (1)578 |
| Margenau H., Murphy G.M. — The mathematics of physics and chemistry | 178, 191 |
| Arya A.P. — Introduction to Classical Mechanics | 191 |
| Thompson Philip A. — Compressible-fluid dynamics | 633 |
| Carmeli M. — Classical Fields: General Gravity and Gauge Theory | 7—10, 175, 370, 380 |
| Woods F.S., Bailey F.H. — Elementary Calculus | 270 |
| Ohanian H.C. — Classical Electrodynamics | 17 |
| Novikov S.P., Fomenko A.T. — Basic elements of differential geometry and topology | 17, 20 |
| Schwartz M. — Principles of electrodynamics | 62—67 |
| Harman T.L., Dabney J.B., Richert N.J. — Advanced Engineering Mathematicas with MATLAB | 590 |
| Aliprantis C. — Principles of real analysis | 395 |
| Stratton J.A. — Electromagnetic Theory | 198—199 |
| Copeland A.H. — Geometry, algebra, and trigonometry by vector methods | 272 |
| Wolfgang K. H. Panofsky, Phillips Panofsky, Melba Panofsky — Classical Electricity and Magnetism | 88, 153, 473, 475 |
| Weinreich G. — Geometrical vectors | 17, 75—77, 100—101, 105, 106 |
| Rosser G. — Interpretation of classical electromagnetism | 389 |
| Loomis L.H., Sternberg S. — Advanced calculus | 345 (Ex. 11.5) |
| Candel A., Conlon L. — Foliations I | 90 |
| Lemm J.M. — Mathematical elasticity. Theory of shells | 15 |
| Hobbie R., Roth B. — Intermediate Physics for Medicine and Biology, | 578 |
| Griffits D.J. — Introductions to electrodynamics | 43—45, 548 |
| Blum E.K., Lototsky S.V. — Mathematics of Physics and Engineering | 141 |
| Jeffreys H. — Methods Of Mathematical Physics | 534, 695 |
| Synge J.L., Griffith B.A. — Principles of Mechanics | 306, 307, 338 |
| Wrede R.C., Spiegel M. — Theory and problems of advanced calculus | 161,174,175 |
| Miller W. — Symmetry and Separation of Variables | 165, 177, 192, 196, 207, 212, 221 |
| Apostol T.M. — Calculus (Volume 2): Multi-Variable Calculus and Linear Algebra with Applications | 409 |
| Gullberg J. — Mathematics: from the birth of numbers | 582 |
| Snygg J. — Clifford algebra: a computational tool for physicists | 53 |
| Vaisala J. — Lectures On N-Dimensional Quasiconformal Mappings | 49 |
| Franklin P. — Differential and integral calculus | 551 |
| Buerger M.J. — X-Ray Crystallography | 135—137, 139 |
| Snygg J. — Clifford algebra: a computational tool for physicists | 53 |
| Moeller K. — Optics: Learning by Computing, with Examples Using Maple, MathCad®, Matlab®, Mathematica®, and Maple® (Undergraduate Texts in Contemporary Physics) | 311 |
| Reichl L.E. — Modern Course in Statistical Physics | 540 |
| Bird R.B., Curtiss C.F., Armstrong R.C. — Dynamics of Polymeric Liquids. Vol. 2. Kinetic Theory | (1)578 |
| Melissinos A.C. — Principles of modern technology | 143 |
| Lin C., Segel L. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 565 |
| Lin C., Segel L. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 565 |
| Lin C., Segel L. — Mathematics applied to deterministic problems in the natural sciences | 565 |