Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
Ìåõìàòÿíàì
square Ïåðâûé êóðñ

square Âòîðîé êóðñ

square Òðåòèé êóðñ

square ×åòâåðòûé êóðñ

square Ïÿòûé êóðñ
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
Êðàñîòà
blank
blank
Ðåçóëüòàò ïîèñêà

Ïîèñê êíèã, ñîäåðæàùèõ: Diophantus



ÊíèãàÑòðàíèöû äëÿ ïîèñêà
Gardner M. — Wheels, life, and other mathematical amusements10, 11, 12, 13, 14, 15, 17, 22, 27
Bruce C.Berndt — Ramanujan's Notebooks (part 4)108
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2118.A 182.F 187 296.A
Grimaldi R.P. — Discrete and combinatorial mathematics. An introduction230, 239
Hardy G.H., Wright E.M. — An Introduction to the Theory of Numbers201, 202
Kisacanin B. — Mathematical problems and proofs. Combinatorics, Number theory, and Geometry109
Knapp A.W. — Elliptic Curves (MN-40)3, 6, 7, 10, 50
Ewald W. — From Kant to Hilbert, Vol.2559
Matijasevich Y. — Hilbert's 10th Problem2, 16, 146, 227
Kline M. — Mathematics in Western Culture63
Ewald W. — From Kant to Hilbert, Vol.1559
Steele J.M. — Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities40, 286
Devlin K.J. — Language of Mathematics: Making the Invisible Visible4
Seltman M. (ed.), Goulding R. (ed.) — Thomas Harriot's Artis Analyticae PRAXIS: An English Translation with Commentary6—7, 8, 20
Everest G., Ward T. — An Introduction to Number Theory5
Lozansky E., Rousseau C. — Winning Solutions56
Cuomo S. — Ancient Mathematics161, 218—223, 225, 229, 245—246
Aczel A.D. — Descartes' Secret Notebook: A True Tale of Mathematics, Mysticism, and the Quest to Understand the Universe43—44
Alaca S., Williams K.S. — Introductory Algebraic Number Theory385, 412
Olds C.D., Davidoff G. — Geometry of Numbers51, 54, 107
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1135, 138—144, 192
Humphreys J.F., Prest M.Y. — Numbers, Groups and Codes33, 36, 74
Stillwell J. — Yearning for the Impossible: The Surprising Truths of Mathematics34
Turnbull H.W. — The Great Mathematicians42, 49—53, 55
Stewart I., Tall D. — Algebraic Number Theory and Fermat's Last Theorem2, 235
Cantwell B.J., Crighton D.G. (Ed), Ablowitz M.J. (Ed) — Introduction to Symmetry Analysis173
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 3135, 138—144, 192
Fowler D.H. — Mathematics of Plato's Academy: A New Reconstruction9, 55, 226, 227, 232, 262, 263, 304, 313, 341, 359, 399
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 2135, 138—144, 192
Kneale M. — Development of Logic62
Kasner E., Newman J. — Mathematics and the Imagination187
Edwards H.M. — Fermat's Last Theorem: A Genetic Introduction to Algebraic Number Theory2, 26
Heath T.L. (ed.) — Thirteen Books of Euclid's Elements, Vol. 186
Dickson L.E. — History of the Theory of Numbers, Volume ll: Diophantine Analysis3, 8, 77, 80, 165—166, 172, 174—177, 186, 188, 225—226, 259, 261, 275, 345—346, 402, 404, 419, 435, 443, 459, 472, 478, 483, 515—517, 518, 522, 524—525, 527, 533, 550, 599, 602, 607, 657, 667 (1, 6—7, 9, 16, 36, 79, 167, 173—174, 179, 181—182, 191—192, 205—206, 227, 229, 231, 236—237, 276, 346, 363, 444—446, 448, 453—454, 458, 459, 465, 472, 476, 482—483, 500, 509, 514, 516, 518—519, 521—522, 524, 545, 551, 605, 607—609, 610—612, 615—616, 620, 657—658, 731)
Gelfond A.O. — The Solution of Equations in Integersviii
D'Angelo J.P., West D.B. — Mathematical Thinking: Problem-Solving and Proofs128
Burger E.B. — Exploring the Number Jungle: A Journey into Diophantine Analysis3
Aleksandrov A.D., Kolmogorov A.N. — Mathematics. It's content, methods, and meaning (Vol. 1)37, 38
Lemmermeyer F. — Reciprocity Laws: From Euler to Eisenstein1, 11, 14
Rosenfeld B.A. (Author), Shenitzer A. (Translator), Grant H. (Assistant) — A history of non-Euclidean geometry: evolution of the concept of a geometric space153—155, 167
Hardy G.H., Wright E.M. — Introduction to theory of numbers201, 202
Hardy G.H., Wright E.M. — An Introduction to the Theory of Numbers201, 202
Logsdon M.I. — A Mathematician Explains28
Krizek M., Somer L., Luca F. — 17 Lectures on Fermat Numbers: From Number Theory to Geometryx, xiv
Koblitz N. — Introduction to Elliptic Curves and Modular Forms1
Aleksandrov A.D., Kolmogorov A.N., Lavrent'ev M.A. — Mathematics, its content, methods, and meaning37, 38
Fink K. — A brief history of mathematics65, 70, 77, 81, 84, 85, 90, 93, 133 134
Heath T.L. (ed.) — Thirteen Books of Euclid's Elements, Vol. 3I. 86
Carmichael R.D. — Diophantine Analysis4, 5, 9, 104, 106, 107, 108, 111, 112, 113
Kasner E., Newman J. — Mathematics and the imagination187
Baker A. — A Concise Introduction to the Theory of Numbers74, 84
Averbach B., Chein O. — Problem solving through recreational mathematics70, 95, 96, 103, 104
Katz V.J. — A History of Mathematics: An Introduction168, 187
Prasolov V., Solovyev Y. — Elliptic functions and elliptic integrals103
Audichya A. — Mathematics: Marvels and milestones85
Ewald W.B. — From Kant to Hilbert: A source book in the foundations of mathematics. Volume 2559
Flegg G., Hay C., Moss B. — Nicolas Chuquet, Renaissance Mathematician5, 77, 349, 354, 359
Polya G. — Mathematical Discovery: On Understanding, Learning and Teaching Problem Solving Combined Edition2 187
Kraitchik M. — Mathematical Recreations25, 44, 66, 69
Klee V., Wagon S. — Old and New Unsolved Problems in Plane Geometry and Number Theory (Dolciani Mathematical Expositions Series #11)168
Kline M. — Mathematics for the Nonmathematician18
Stillwell J. — Mathematics and its history4, 27, 28, 35, 36, 49, 135, 140, 141, 144, 147, 189
Dickson L.E. — History of the theory of numbers. Volume 3: quadratic and higher forms60
Bell E.T. — Mathematics: Queen and Servant of Sciencexiv, 159, 236—237
Coutinho S. — The mathematics of ciphers: number theory and RSA cryptography8—9, 45, 73—74
Ewald W.B. — From Kant to Hilbert: A source book in the foundations of mathematics. Volume 1559
D'Angelo J.P., West D.B. — Mathematical thinking: problem-solving and proofs128
Keith Devlin — Mathematics: The New Golden Age130, 178
Odifreddi P., Sangalli A., Dyson F. — The Mathematical Century: The 30 Greatest Problems of the Last 100 Years26, 82, 84
Kline M. — Mathematical thought from ancient to modern times135, 138—144, 192
Brezinski C. — History of Continued Fractions and Padé Approximants12, 22, 27, 28, 35, 72, 75, 320
Lectures on Elementary Mathematics54, 151
Ruelle D. — The mathematician's brain: A personal tour through the essentials of mathematics145n10
blank
HR
@Mail.ru
© Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01!| Valid CSS! Î ïðîåêòå