|
|
Ðåçóëüòàò ïîèñêà |
Ïîèñê êíèã, ñîäåðæàùèõ: Renormalization group
Êíèãà | Ñòðàíèöû äëÿ ïîèñêà | Kogut J.B., Stephanov M.A. — The Phases of Quantum Chromodynamics: From Confinement to Extreme Environments | | Cardy J. — Scaling and renormalization in statistical physics | | Sornette D. — Critical phenomena in natural sciences | | Gomez C., Ruiz-Altaba M., Sierra G. — Quantum Groups in Two-Dimensional Physics | 272, 275, 279 | Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 111.A | Zinn-Justin J. — Quantum field theory and critical phenomena | 566 (see also “RG”) | Di Francesco P., Mathieu P., Senechal D. — Conformal field theory | 234 | Zinn-Justin J. — Quantum field theory and critical phenomena | 540 | Rettig W. (ed.), Strehmel B., Schrader S. — Applied Fluorescence in Chemistry, Biology and Medicine | 331, 335 | Parisi G. — Statistical field theory | 144 171—173, 181, n. 25 | Bovier A., Gill R. (Ed), Ripley B.D. (Ed) — Statistical Mechanics of Disordered Systems: A Mathematical Perspective | 125 | Chipot M., Quittner P. — Handbook of Differential Equations: Stationary Partial Differential Equations, Vol. 3 | 207 | Cartier P., Julia B., Moussa P. — Frontiers in Number Theory, Physics, and Geometry II | 716 | Fradkin E. — Field theories of condensed matter systems | 109 | Kapusta J.I. — Finite-temperature field theory | 55—60, 79—80, 89—90, 125—131, 138—139 | Thouless D.J. — Topological quantum numbers in nonrelativistic physics | 102, 106, 107 | Yeomans J.M. — Statistical Mechanics of Phase Transitions | 13, 105 ff. | Chaikin P.M., Lubensky T.C. — Principles of condensed matter physics | 242—275, 681 | Kadanoff L.P. — Statistical physics | 226 | Toda M., Kubo R., Saito N. — Statistical Physics I: Equilibrium Statistical Mechanics, Vol. 1 | 171 | Dorlas T.C. — Statistical mechanics, fundamentals and model solutions | 46 | Ito K. — Encyclopedic Dictionary of Mathematics | 111.A | Brown L.S. — Quantum Field Theory | 168, 247 | Elizalde E., Odintsov A.D., Romeo A. — Zeta Regularization Techiques with Applications | 146 | Muta T. — Foundations of Quantum Chromodynamics | 186 | Gottfried K., Weisskopf V.F. — Concepts of particle physics (volume 2) | 396 | van Baal P. (ed.) — Confinement, duality, and non-perturbative aspects of QCD | 122, 185, 218, 265, 278, 474 | Nagaosa N. — Quantum field theory in condensed matter physics | 59, 77, 141 | Dalvit D.A.R., Frastai J., Lawrie I.D. — Problems on statistical mechanics | 5.28 | Rickayzen G. — Green's functions and condensed matter | 285, 316, 324, 331—340 | Unertl W.N. — Physical Structure | 638 | Aoki K. — Nonlinear dynamics and chaos in semiconductors | 341 | Lee T.D. — Practicle physics and introduction to field theory | 458—462 | Lichtenberg A.J., Liebermen M.A. — Regular and Chaotic Dynamics | 491, 542ff | Collins P.D., Squires E.J., Martin A.D. — Particle Physics and Cosmology | 62 | Birrell N.D., Davies P.C.W. — Quantum Fields in Curved Space | 164, 309, 311, 314 | Weinberg S. — The Quantum Theory of Fields. Vol. 1 Foundations | 490, 516, 525 | Anderson P.W. — The theory of superconductivity in the high-Tc curprates | 22, 72, 141, 159 | Bjorken J.D., Drell S.D. — Relativistic Quantum Fields | 368, 376 | Lebowitz J.L., Montroll E.W. — Nonequilibrium phenomena II. From stochastics to hydrodynamics | 86 | Kleinert H., Schulte-Frohlinde — Critical Properties of (Phi)P4-Theories | 24, 154 | Collins P.D.B., Martin A.D., Squires E.J. — Particle Physics and Cosmology | 62 | Nagaosa N. — Quantum field theory in strongly correlated electronic systems | 38, 104, 107 | Jensen H.J. — Self-Organized Criticality: Emergent Complex Behavior in Physical and Biological Systems | 53, 101, 106, 108—124, 127 | Baxter R.J. — Exactly Solved Models in Statistical Mechanics | 11 | Zee A. — Quantum field theory in a nutshell | 337, 339 | Ambjorn J., Durhuus B., Jonsson T. — Quantum Geometry: A Statistical Field Theory Approach | 18, 61, 262 | Collins J.C. — Renormalization | 50, 168 | Siegel W. — Fields | VIIB3,6, C1 | Hatfield B. — Quantum field theory of point particles and strings | 463 | Christensen S.M. — Quantum theory of gravity | 251, 254, 346 | Bogoliubov N.N., Shirkov D.V. — Introduction to the Theory of Quantized Fields | 357 | Zamolodchikov A.A., Zamolodchikov Al.B. — Conformal field theory and critical phenomena in two-dimensional systems | 271—272, 293, 295, 297,355 | Ashcroft N.W., Mermin N.D. — Solid State Physics | 699n | Cheng T.-P., Li L.-F. — Gauge Theory of Elementary Particle Physics | see also anomalous dimension, effective (running) coupling | Thomas A.W., Weise W. — The structure of the nucleon | 126, 131, 139, 166 | Gallavotti G. — Statistical Mechanics | 110 | Domb C.M., Green M. — Phase Transitions and Critical Phenomena: Series Expansion for Lattice Models, Vol. 3 | 2, 468, 473, 477 | Kreimer D. — Knots and Feynman Diagrams | 245 | Weinberg S. — The Quantum Theory of Fields. Vol. 2 Modern Applications | 111—158, 263—265, 329—332, 349—350, 453, see also "Anomalous dimensions", "Asymptotic freedom", "Asymptotic safety", "Beta function", "Critical phenomena", "Fixed point", "Landau ghost" | Gallavotti G. — Foundations of fluid mechanics | 209, 398 | Itzykson C., Drouffe J-M. — Statistical field theory. Vol. 1 | 270 | Christe P., Henkel M. — Introduction to conformal invariance and its applications to critical phenomena | 4 | Siegel W. — Fields | VIIB3, 6, C1 | Chaikin P., Lubensky T. — Principles of condensed matter physics | 242—75, 681 (see also momentum shell renormalization group, Migdal — Kadanoff procedure) | Avramidi I.G. — Heat Kernel and Quantum Gravity | 5, 18, 101 | Tzenov S.I. — Contemporary Accelerator Physics | 95 | Mohapatra R.N. — Massive Neutrinos in Physics and Astrophysics | 188, 195, 198, 236 | Gould H., Tobochnik J., Christian W. — An introduction to computer simulation methods | 475—484 | Ambjorn J., Durhuus B., Jonsson T. — Quantum Geometry. A Statistical Field Theory Approach | 18, 61, 262 | Ferrario M., Ciccotti G., Binder K. — Computer Simulations in Condensed Matter Systems. Volume 2 | 314 | Marder M.P. — Condensed matter physics | 362, 692 | Hooft G.T. — Under the spell of the gauge principle | 4, 205—249 | Leader E., Predazzi E. — An introduction to gauge theories and modern particle physics | 2.53, 2.61, 2.73 | Caianiello E.R. — Combinatorics and renormalization in quantum field theory | 104, 107 | Benfatto G., Gallavotti G. — Renormalization Group | 3, 19, 29, 36, 38, 40, 55, 56, 65, 74 | Deligne P., Etingof P., Freed D. — Quantum fields and strings: A course for mathematicians, Vol. 2 (pages 727-1501) | 551ff, 777ff, 787, 1163 | Deligne P., Kazhdan D., Etingof P. — Quantum fields and strings: A course for mathematicians | 551ff, 777ff, 787, 1163 | Amelino-Camelia G., Kowalski-Glikman J. — Planck Scale Effects in Astrophysics and Cosmology (Lecture Notes in Physics) | 263 | Henkel M. — Conformal Invariance and Critical Phenomena | 11, 52 | Vafa C., Zaslow E. — Mirror symmetry | 323 | Dash J. — Quantitative Finance and Risk Management: A Physicist's Approach | 634 | Ticciati R. — Quantum field theory for mathematicians | 632 | Brown L., Dresden M., Hoddeson L. — Pions to quarks: Particle physics in the 1950s | 698 | Polchinski J. — String theory (volume 2). Superstring theory and beyond | 259—266, 346, 350, 369 | Kardar M. — Statistical physics of fields | 60, 68 | Ruelle D. — Elements of Differentiable Dynamics and Bifurcation Theory | 71, 81 | Kleinert H. — Gauge fields in condensed matter (part 2) | 663, 665, 669 | Meyer-Ortmanns H., Reisz T. — Principles of phase structures in particle physics | 37, 356, 597 | Collins P.D.B., Martin A.D., Squires E.J. — Particle Physics and Cosmology | 62 | Rivasseau V. — From Perturbative to Constructive Renormalization | 112—113 | Bellac M. — Thermal Field Theory (Cambridge Monographs on Mathematical Physics) | 2, 179 | Badii R., Politi A. — Complexity: Hierarchical structures and scaling in physics | 134—141 | Plischke M., Bergersen B. — Equilibrium statistical physics | 237—300, 395, 417, 548, 550 | Jorgensen P.E.T. — Analysis and Probability: Wavelets, Signals, Fractals | see "group, renormalization" |
|
|