Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Kadison R.V., Ringrose J.R. — Fundamentals of the theory of operator algebras (vol. 1) Elementary Theory | 103, 313 |
Taylor M.E. — Partial Differential Equations. Qualitative studies of linear equations (vol. 2) | 76, 157, 166 |
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 1) Functional analysis | 39 |
Apostol T.M. — Calculus (vol 2) | 138 |
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 251.E 390.E |
Morse P., Feshbach H. — Methods of Theoretical Physics (part 1) | 84 |
Morse P., Feshbach H. — Methods of Theoretical Physics (part 2) | 84 |
Streater R.S., Wightman A.S. — PCT, Spin and Statistics, and All That | 7 |
Bognar J. — Indefinite Inner Product Spaces | 128 |
Enns R.H., Mc Guire G.C. — Nonlinear physics with mathematica for scientists and engineers | 498 |
Hoffman K., Kunze R. — Linear algebra | 302 |
Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 1) | 467 |
Porter D., Stirling D.S.G. — Integral equations: a practical treatment, from spectral theory to applications | 177, 200, 303 |
Hochstadt H. — Integral Equations (Pure & Applied Mathematics Monograph) | 144 |
Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 2) | 467 I |
Rosenberg J. — Algebraic K-Theory and Its Applications | 2.2.10, 3.3.8(4) |
Brin M., Stuck G. — Introdution to dynamical system | 80 |
Artin M. — Algebra | 253 |
Douglas R.G. — Banach algebra techniques in operator theory | 84, 117 |
Mukamel S. — Principles of Nonlinear Optical Spectroscopy | 22, 46 |
Pugovecki E. — Quantum mechanics in hilbert space | 212 |
Levine I.N. — Molecular Spectroscopy | 108 |
Gil’ M.I. — Operator functions and localization of spectra | 76 |
Curtain R.F., Pritchard A.J. — Functional Analysis in Modern Applied Mathematics | 69 |
Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications | 160 |
Gracia-Bondia J.M., Varilly J.C., Figueroa H. — Elements of Noncommutative Geometry | 143, 239 |
Arveson W. — A Short Course on Spectral Theory | 41 |
Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 206 |
Prugovecki E. — Quantum Mechanics in Hilbert Space | 212 |
Young R.M. — An Introduction to Non-Harmonic Fourier Series, Revised Edition | 48 |
Araki H. — Mathematical Theory of Quantum Fields | 198 |
Gohberg I., Goldberg S. — Basic Operator Theory | 185 |
Treil S. — Linear Algebra Done Wrong | 136 |
Szkelyhidi L. — Discrete Spectral Synthesis and Its Applications | 10 |
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 3) Scattering theory | 39 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 663 |
Geroch R. — Mathematical physics | 292 |
Reed M., Simon B. — Methods of Functional Analysis (in 4 volumes). Volume 1: Functional Analysis | 39 |
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 4) Analysis of operators | $39^1$ |
Rammer J. — Quantum transport theory | 39 |
Rudin W. — Functional analysis | 298 |
Eidelman Y., Milman V., Tsolomitis A. — Functional Analysis. An Introduction | 121 |
Ito K. — Encyclopedic Dictionary of Mathematics | 251.E, 390.E |
Jauch J.M. — Foundations of quantum mechanics | 36 |
Mukamel S. — Principles of nonlinear spectroscopy | 22, 46 |
Braunstein S.L. — Quantum computing | 7, 118, 128, 132, 134, 206, 264 |
Kadison R.V., Ringrose J.R. — Fundamentals of the Theory of Operator Algebras (vol. 2) Advanced Theory | 103, 313 |
Tung W.K. — Group Theory in Physics: An Introduction to Symmetry Principles, Group Representations, and Special Functions | 3, 305 |
Havin V.P., Nikolski N.K. (eds.) — Linear and Complex Analysis Problem Book 3 (part 2) | 5.10, S.6.12, 8.9, 9.2, 9.4 |
Lopuzanski J. — An introduction to symmetry and supersymmetry in quantum field theory | 110 |
Radjavi H., Rosenthal P. — Simultaneous Triangularization | 143 |
Young R.M. — An Introduction to Nonharmonic Fourier Series | 48 |
Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory | (see “Linear operator, unitary”) |
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 2) Fourier analysis, self-adjointness | 39 |
Basdevant J.-L., Dalibard J. — The Quantum Mechanics Solver | 227 |
Simmons G.F. — Introduction to topology and modern analysis | 272 |
Halzen F., Martin A.D. — Quarks and Leptons: An Introductory Course in Modern Particle Physics | 35 |
Shankar R. — Principles of quantum mechanics | 27 |
Prigogine I. — From being to becoming: time and complexity in the physical sciences. | 54, 55 |
Basdevant J.-L., Dalibard J. — Quantum Mechanics | 111, 146, 246 |
Auletta G. — Foundations and Interpretation of Quantum Mechanics | 47 |
Gottfried K., Weisskopf V.F. — Concepts of Particle Physics | 11 |
Pavičić M. — Quantum Computation and Quantum Communication: Theory and Experiments | 27, 186 |
Ya Helemskii A., West A. — Banach and locally convex algebras | 15 |
Katznelson I., KatznelsonY.R. — A (Terse) Introduction to Linear Algebra (Student Mathematical Library) | 121 |
Steeb W., Hardy Y. — Problems and Solutions in Quantum Computing and Quantum Information | 66 |
Streater R.F., Wightman A.S. — PCT, spin and statistics and all that | 7 |
Kreyszig E. — Introductory functional analysis with applications | 201, 205, 546 |
Barnett S.M., Radmore P.M. — Methods in Theoretical Quantum Optics | 5, 16, 39, 84, 86, 87 |
Amrein W.O., Sinha K.B., Jauch J.M. — Scattering Theory in Quantum Mechanics: Physical Principles and Mathematical Methods | 52, 232 |
Morse P.M. — Methods of theoretical physics | 84 |
Kemble E. C. — The fundamental principles of quantum mechanics | 247, 275, 281, 512, 524 |
Jauch J.M. — Foundations Of Quantum Mechanics | 36 |
Douglas R.G. — Banach algebra techniques in operator theory | 84, 117 |
McQuarrie D.A. — Statistical Mechanics | 537, 616, 617 |
Alicki R., Lendi K. — Quantum Dynamical Semigroups And Applications | 2 |
Richards P.I. — Manual of Mathematical Physics | 415 |
Walters P. — An introduction to ergodic theory | 10 |
Bachor H.-A., Ralph T.C. — A guide to experiments in quantum optics | 77 |
Dunford N., Schwartz J., Bade W.G. — Linear operators. Part 2 | X.4.1 (906) |
Biedenharn L.C., Louck J.D. — Angular momentum in quantum physics | 41, 42, 44 |
Zeidler E. — Applied Functional Analysis: Applications to Mathematical Physics | 212, 219, 272, 330 |
Hille E., Phillips R.S. — Functional Analysis and Semi-Groups | 584 |
Laurens Jansen — Theory of Finite Groups. Applications in Physics | 193 |
Adler S.L. — Quaternionic Quantum Mechanics and Quantum Fields | see "Operator, quaternion unitary" |
Apostol T.M. — Calculus (Volume 2): Multi-Variable Calculus and Linear Algebra with Applications | 138 |
Pier J.-P. — Mathematical Analysis during the 20th Century | 92, 146 |
Collatz L. — Functional analysis and numerical mathematics | 112 |
Sakurai J.J. — Modern quantum mechanics | 37, 80—82, 249 |
Gohberg I., Goldberg S., Kaashoek M. — Classes of linear operators. (volume 2) | 85 |
Constantinescu F., Magyari E. — Problems in quantum mechanics | 2 |
Rodberg L.S., Thaler R.M. — Introduction to the quantum theory of scattering | 171 |
Geroch R. — Mathematical physics | 292 |
Farina J.E.G. — Quantum theory of scattering processes | 109 |
Pazy A. — Semigroups of linear operators ans applications to PDE | 41 |
Dunford N., Schwartz J.T., Bade W.G. — Linear Operators, Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space (Pure and Applied Mathematics: A Series of Texts and Monographs) | X.4.1 906 |
Gohberg I., Goldberg S., Kaashoek M. — Classes of linear operators. (volume 1) | 85, 432 |
Lions J-L., Dautray R. — Mathematical Analysis and Numerical Methods for Science and Technology: Volume 2: Functional and Variational Methods | 355 |
Landau L.D., Lifshitz E.M. — Course of Theoretical Physics (vol.3). Quantum Mechanics. Non-relativistic Theory | 36 |
Blanchard P., Bruening E. — Mathematical Methods in Physics: Distributions, Hilbert Space Operators, and Variational Method | 297 |
Singh R., Manhas J. — Composition Operators on Function Spaces (North-Holland Mathematics Studies) | 36 |
Mackey G. — Unitary Group Representations in Physics, Probability and Number Theory | 34 |
Cheney W. — Analysis for Applied Mathematics | 101 |
Geroch R. — Mathematical physics | 292 |
Dennery P., Krzywicki A. — Mathematics for Physicists | 116 |
Liboff R.L. — Introductory quantum mechanics | 427, 432p, 435p |
Jorgensen P.E.T. — Analysis and Probability: Wavelets, Signals, Fractals | see "operator, unitary" |
J. M. Borwein, Qi.Zhu — Techniques of Variational Analysis (CMS Books in Mathematics) | 318 |
J. M. Borwein, Qi.Zhu — Techniques of Variational Analysis (CMS Books in Mathematics) | 318 |
J. M. Borwein, Qi.Zhu — Techniques of Variational Analysis (CMS Books in Mathematics) | 318 |