Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Weintraub S. — Differential Forms. A complement to vector calculus | |
Ëþáèìîâ À., Êèø Ä. — Ââåäåíèå â ýêñïåðèìåíòàëüíóþ ôèçèêó ÷àñòèö | 242 |
Êèøø Ô., Ñåíòàãîòàè ß. — Àíàòîìè÷åñêèé àòëàñ ÷åëîâå÷åñêîãî òåëà (Òîì 1. Êîñòíàÿ ñèñòåìà, ñóñòàâíàÿ ñèñòåìà, ìûøå÷íàÿ ñèñòåìà) | 75, 76, 158 (vide etiam “Arcus anterior, posterior atlantis”) |
Êèøø Ô., Ñåíòàãîòàè ß. — Àíàòîìè÷åñêèé àòëàñ ÷åëîâå÷åñêîãî òåëà (Òîì 3. Íåðâíàÿ ñèñòåìà, ñîñóäèñòàÿ ñèñòåìà, îðãàíû ÷óâñòâ) | I. 75, 76, 168, II. 36, III. 70, 76, 124 (vide etiam “Arcus anterior, posterior atlantis”) |
Êèøø Ô., Ñåíòàãîòàè ß. — Àíàòîìè÷åñêèé àòëàñ ÷åëîâå÷åñêîãî òåëà (Òîì 2. Âíóòðåííèå îðãàíû, âíóòðèñåêðåòîðíûå æåëåçû, ñåðäöå) | 36 (vide etiam “Arcus anterior, posterior atlantis”) |
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 105.C |
Zeidler E. — Nonlinear Functional Analysis and its Applications IV: Applications to Mathematical Physic | 534 |
Olver P.J. — Equivalence, Invariants and Symmetry | 8 |
Lee J.M. — Differential and Physical Geometry | 82 |
Manin Yu.I. — Frobenius manifolds, quantum cohomology, and moduli spaces | V.5.5 |
Felsager B. — Geometry, particles and fields | 256 |
Baker A. — Matrix Groups: An Introduction to Lie Group Theory | 182 |
Woychowsky E. — AJAX: Creating Web Pages with Asynchronous JavaScript and XML | |
Goldberg S.I. — Curvature and homology | 149 |
Hicks N. — Notes on differential geometry | 2 |
Miranda R. — Graduate studies in mathematics (vol.5). Algebraic curves and Riemann surfaces | 3, 341 |
Shnider S., Stasheff J., Markl M. — Operads in Algebra, Topology, and Physics | 268 |
MacLane S., Moerdijk L. — Sheaves in Geometry and Logic | 74 |
Lee J.M. — Introduction to Smooth Manifolds | 8 |
Millman R.S., Parker G.D. — Elements of Differential Geometry | 204 |
Avery J., Holmes J. — Windows Developer Power Tools | 2nd 3rd |
Brin M., Stuck G. — Introdution to dynamical system | 138 |
Kriegl A., Michor P.W. — The Convenient Setting of Global Analysis | 264 |
Edwards H. — Advanced Calculus: A Differential Forms Approach | 203 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis | 231 |
Kirwan F. — Complex algebraic curves | 125 |
Shafarevich I.R., Shokurov V.V., Danilov V.I. — Algebraic geometry I: Algebraic curves algebraic. Manifolds and schemes | 188 |
Sepanski R.M. — Compact Lie Groups | 1 |
Moerdijk I., Mrcun J. — Introduction to Foliations and Lie Groupoids | 1 |
Michor P.W. — Topics in Differential Geometry | 3 |
Torretti R. — Relativity and Geometry | 257 |
Jones G.A., Singerman D. — Complex Functions: An Algebraic and Geometric Viewpoint | 168 |
Zung N.T. — Poisson Structures and their Normal Forms | 216 |
Gallot S., Hulin D. — Riemannian Geometry | 1.6, 4.1. |
Hansen G.A., Zardecki A., Douglass R.A. — Mesh Enhancement: Selected Elliptic Methods, Foundations and Applications | 480 |
Accola R.D. — Topics in the Theory of Riemann Surfaces | 1 |
Kolar I., Michor P.W., Slovak J. — Natural Operations in Differential Geometry | 4 |
Krantz S.G. — Function Theory of Several Complex Variables | 493 |
Boothby W.M. — An introduction to differentiable manifolds and riemannian geometry | 59 |
Jost J., Simha R.T. — Compact Riemann Surfaces: An Introduction to Contemporary Mathematics | 1, 19 |
Naber G.L. — Topology, Geometry and Gauge Fields | 1 |
Kobayashi S., Nomizu K. — Foundations of Differential Geometry, Volume 2 | I-2 |
Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 412 |
Ito K. — Encyclopedic Dictionary of Mathematics | 105.C |
Carter J.S. — How Surfaces Intersect in Space: A Friendly Introduction to Topology | 236 |
Morita S. — Geometry of differential forms | 14 |
Braunstein S.L. — Quantum computing | 116 |
Higham N.J. — Accuracy and Stability of Numerical Algorithms | 579 |
Morita Sh. — Geometry of Differential Forms | 14 |
van de Hulst H.C. — Light Scattering by Small Particles | 435, 436, 439 |
Stewart J. — Advanced general relativity | 2 |
Áðàóí Ï. (ðåä.) — Ìîáèëüíîñòü ïðîãðàììíîãî îáåñïå÷åíèÿ | 189 |
Thirring W.E. — Classical Mathematical Physics: Dynamical Systems and Field Theories | 12 |
De Felice F., Clarke C.J.S. — Relativity on curved manifolds | 17 |
Thirring W.E. — Course in Mathematical Physics: Classical Dynamical System, Vol. 1 by Walter E. Thirring | 9 |
O'Neill B. — Semi-Riemannian Geometry: With Applications to Relativity | 2 |
Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds | 204 |
Spivak M. — A Comprehensive Introduction to Differential Geometry (Vol.1) | 28 |
Guggenheimer H.W. — Differential Geometry | 197 |
Seppala M. — Geometry of Riemann surfaces and Teichmuller spaces | 70 |
Kirillov A.A. — Elements of the Theory of Representations | 62 |
Matveev S.V. — Lectures on Algebraic Topology | 18 |
Berger M., Cole M. (translator) — Geometry I (Universitext) | 4.2.1 |
Tarantola A. — Inverse problem theory and methods for model parameter estimation | 232 |
Pepinsky R. (ed.), Robertson J.M. (ed.), Speakman J.C. (ed.) — Computing methods and the phase problem in X-ray crystal analysis | see “MUSE” |
Tamura I. — Topology of lie groups, I and II | 43, 62 |
Paoluzzi A. — Geometric Programming for Computer Aided Design by Alberto Paoluzzi: Book Cover * o Table of Contents Read a Sample Chapter Geometric Programming for Computer Aided Design | 195 |
Marcja A., Toffalori C. — A Guide to Classical and Modern Model Theory | 299 |
Carrol B.W., Ostlie D.A. — An introduction to modern astrophysics | 805 |
Wawrzynczyk A. — Group representations and special functions | 15 |
D'Inverno R. — Introducing Einstein's Relatvity | 57 |
Hormander L. — The analysis of linear partial differential operators I | 143 |
Bertlmann R.A. — Anomalies in Quantum Field Theory | 31 |
Straumann N. — General relativity and relativistic astrophysics | 4 |
Price J.F. — Lie groups and compact groups | 2 |
Hatfield B. — Quantum field theory of point particles and strings | 541 |
Arwini K. — Information Geometry: Near Randomness and Near Independence | 20 |
Schlichenmaier M. — An Introduction to Riemann Surfaces, Algebraic Curves and Moduli Spaces | 1 |
Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142) | 523 |
Boothby W.M. — An Introduction to Differentiable Manifolds and Riemannian Geometry | 59 |
Feynman R.P. — What do you care what other people think? | 64 |
Carmeli M. — Classical Fields: General Gravity and Gauge Theory | 555 |
Graham J., Baldock R. — Image processing and analysis. A practical approach | 198, 212, 261, see also "Edinburgh Mouse atlas" |
Dold A. — Lectures on Algebraic Topology | 251 |
Lee J.M. — Differential and physical geometry | 82 |
Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity | 19 |
Bergin T.J., Gibson R.G. — History of Programming Languages (Vol. 2) | 17—18, 22 |
Morita S. — Geometry of Differential Forms | 14 |
Ehlers J. (ed.) — Relativity theory and astrophysics. 1. Relativity and cosmology | 62 |
Rice J.R. — The approximation of functions. Nonlinear and multivariate theory | 171 |
Novikov S.P., Fomenko A.T. — Basic elements of differential geometry and topology | 128 |
Ehlers J. (ed.) — Relativity theory and astrophysics. Relativity and cosmology | 62 |
Hermann R. — Differential geometry and the calculus of variations | 24 |
Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 111, 543 |
Israel W. (ed.) — Relativity, astrophysics and cosmology | 289 |
Marathe K.B., Martucci G. — The mathematical foundations of gauge theories | 2 |
Kobayashi S., Nomizu K. — Foundations of Differential Geometry, Volume 1 | 2 |
Serre J.-P. — Lie Algebras and Lie Groups | 76 |
Ìåòêàëô Ì. — Îïòèìèçàöèÿ â Ôîðòðàíå | 25 |
Porteous I.R. — Clifford Algebras and the Classical Groups | 215 |
Vasil'ev V. A., Sossinski A. — Introduction to Topology | 50 |
Krantz S.G. — Function theory of several complex variables | 493 |
Choquet-Bruhat Y. — General Relativity and the Einstein Equations | 1 |
Loomis L.H., Sternberg S. — Advanced calculus | 364 |
Tuynman G.M. — Supermanifolds and Supergroups: Basic Theory | 124 |
Lane S.M. — Mathematics, form and function | 239, 241 |
Frankel T. — The geometry of physics: an introduction | 15 |
Naber G.L. — Topology, Geometry and Gauge Fields | 1 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | 231 |
Israel W. (ed.) — Relativity, astrophysics and cosmology | 289 |
Pier J.-P. — Mathematical Analysis during the 20th Century | 289 |
Israel W. — Relativity, Astrophysics and Cosmology | 289 |
Fritzsche K., Grauert H. — From Holomorphic Functions To Complex Manifolds | 155 |
Greub W., Halperin S., Vanstone R. — Connections, curvature, and cohomology. Volume 1 | 15, 414 |
Ruelle D. — Elements of Differentiable Dynamics and Bifurcation Theory | 143—144 |
Frankel T. — The geometry of physics: An introduction | 15 |
Schutz B. — Geometrical Methods in Mathematical Physics | 25 |
Klingenberg W. — A Course in Differential Geometry (Graduate Texts in Mathematics) | 105, 124 |
Sagle A. A. — Introduction to Lie groups and Lie algebras | 43 |
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 111, 543 |
Azcarraga J., Izquierdo J. — Lie groups, Lie algebras, cohomology and some applications in physics | 2 |
Mac Lane S. — Mathematics: Form and Function | 239, 241 |
Thirring W., Harrell E.M. — Classical mathematical physics. Dynamical systems and field theory | 12 |
Markl M., Shnider S., Stasheff J. — Operads in Algebra, Topology and Physics | 311 |
Nash C., Sen S. — Topology and geometry for physicists | 26, 36—37 |
Miron R. — The Geometry of Higher-Order Lagrange Spaces: Applications to Mechanics and Physics (Fundamental Theories of Physics) | 47 |
Morita S. — Geometry of Differential Forms (Translations of Mathematical Monographs, Vol. 201) | 14 |
J. M. Borwein, Qi.Zhu — Techniques of Variational Analysis (CMS Books in Mathematics) | 291 |