Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
Ìåõìàòÿíàì
square Ïåðâûé êóðñ

square Âòîðîé êóðñ

square Òðåòèé êóðñ

square ×åòâåðòûé êóðñ

square Ïÿòûé êóðñ
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
Êðàñîòà
blank
blank
Ðåçóëüòàò ïîèñêà

Ïîèñê êíèã, ñîäåðæàùèõ: Atlas



ÊíèãàÑòðàíèöû äëÿ ïîèñêà
Weintraub S. — Differential Forms. A complement to vector calculus
Ëþáèìîâ À., Êèø Ä. — Ââåäåíèå â ýêñïåðèìåíòàëüíóþ ôèçèêó ÷àñòèö242
Êèøø Ô., Ñåíòàãîòàè ß. — Àíàòîìè÷åñêèé àòëàñ ÷åëîâå÷åñêîãî òåëà (Òîì 1. Êîñòíàÿ ñèñòåìà, ñóñòàâíàÿ ñèñòåìà, ìûøå÷íàÿ ñèñòåìà)75, 76, 158 (vide etiam “Arcus anterior, posterior atlantis”)
Êèøø Ô., Ñåíòàãîòàè ß. — Àíàòîìè÷åñêèé àòëàñ ÷åëîâå÷åñêîãî òåëà (Òîì 3. Íåðâíàÿ ñèñòåìà, ñîñóäèñòàÿ ñèñòåìà, îðãàíû ÷óâñòâ)I. 75, 76, 168, II. 36, III. 70, 76, 124 (vide etiam “Arcus anterior, posterior atlantis”)
Êèøø Ô., Ñåíòàãîòàè ß. — Àíàòîìè÷åñêèé àòëàñ ÷åëîâå÷åñêîãî òåëà (Òîì 2. Âíóòðåííèå îðãàíû, âíóòðèñåêðåòîðíûå æåëåçû, ñåðäöå)36 (vide etiam “Arcus anterior, posterior atlantis”)
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2105.C
Zeidler E. — Nonlinear Functional Analysis and its Applications IV: Applications to Mathematical Physic534
Olver P.J. — Equivalence, Invariants and Symmetry8
Lee J.M. — Differential and Physical Geometry82
Manin Yu.I. — Frobenius manifolds, quantum cohomology, and moduli spacesV.5.5
Felsager B. — Geometry, particles and fields256
Baker A. — Matrix Groups: An Introduction to Lie Group Theory182
Woychowsky E. — AJAX: Creating Web Pages with Asynchronous JavaScript and XML
Goldberg S.I. — Curvature and homology149
Hicks N. — Notes on differential geometry2
Miranda R. — Graduate studies in mathematics (vol.5). Algebraic curves and Riemann surfaces3, 341
Shnider S., Stasheff J., Markl M. — Operads in Algebra, Topology, and Physics268
MacLane S., Moerdijk L. — Sheaves in Geometry and Logic74
Lee J.M. — Introduction to Smooth Manifolds8
Millman R.S., Parker G.D. — Elements of Differential Geometry204
Avery J., Holmes J. — Windows Developer Power Tools2nd 3rd
Brin M., Stuck G. — Introdution to dynamical system138
Kriegl A., Michor P.W. — The Convenient Setting of Global Analysis264
Edwards H. — Advanced Calculus: A Differential Forms Approach203
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis231
Kirwan F. — Complex algebraic curves125
Shafarevich I.R., Shokurov V.V., Danilov V.I. — Algebraic geometry I: Algebraic curves algebraic. Manifolds and schemes188
Sepanski R.M. — Compact Lie Groups1
Moerdijk I., Mrcun J. — Introduction to Foliations and Lie Groupoids1
Michor P.W. — Topics in Differential Geometry3
Torretti R. — Relativity and Geometry257
Jones G.A., Singerman D. — Complex Functions: An Algebraic and Geometric Viewpoint168
Zung N.T. — Poisson Structures and their Normal Forms216
Gallot S., Hulin D. — Riemannian Geometry1.6, 4.1.
Hansen G.A., Zardecki A., Douglass R.A. — Mesh Enhancement: Selected Elliptic Methods, Foundations and Applications480
Accola R.D. — Topics in the Theory of Riemann Surfaces1
Kolar I., Michor P.W., Slovak J. — Natural Operations in Differential Geometry4
Krantz S.G. — Function Theory of Several Complex Variables493
Boothby W.M. — An introduction to differentiable manifolds and riemannian geometry59
Jost J., Simha R.T. — Compact Riemann Surfaces: An Introduction to Contemporary Mathematics1, 19
Naber G.L. — Topology, Geometry and Gauge Fields1
Kobayashi S., Nomizu K. — Foundations of Differential Geometry, Volume 2I-2
Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry412
Ito K. — Encyclopedic Dictionary of Mathematics105.C
Carter J.S. — How Surfaces Intersect in Space: A Friendly Introduction to Topology236
Morita S. — Geometry of differential forms14
Braunstein S.L. — Quantum computing116
Higham N.J. — Accuracy and Stability of Numerical Algorithms579
Morita Sh. — Geometry of Differential Forms14
van de Hulst H.C. — Light Scattering by Small Particles435, 436, 439
Stewart J. — Advanced general relativity2
Áðàóí Ï. (ðåä.) — Ìîáèëüíîñòü ïðîãðàììíîãî îáåñïå÷åíèÿ189
Thirring W.E. — Classical Mathematical Physics: Dynamical Systems and Field Theories12
De Felice F., Clarke C.J.S. — Relativity on curved manifolds17
Thirring W.E. — Course in Mathematical Physics: Classical Dynamical System, Vol. 1 by Walter E. Thirring9
O'Neill B. — Semi-Riemannian Geometry: With Applications to Relativity2
Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds204
Spivak M. — A Comprehensive Introduction to Differential Geometry (Vol.1)28
Guggenheimer H.W. — Differential Geometry197
Seppala M. — Geometry of Riemann surfaces and Teichmuller spaces70
Kirillov A.A. — Elements of the Theory of Representations62
Matveev S.V. — Lectures on Algebraic Topology18
Berger M., Cole M. (translator) — Geometry I (Universitext)4.2.1
Tarantola A. — Inverse problem theory and methods for model parameter estimation232
Pepinsky R. (ed.), Robertson J.M. (ed.), Speakman J.C. (ed.) — Computing methods and the phase problem in X-ray crystal analysissee “MUSE”
Tamura I. — Topology of lie groups, I and II43, 62
Paoluzzi A. — Geometric Programming for Computer Aided Design by Alberto Paoluzzi: Book Cover * o Table of Contents Read a Sample Chapter Geometric Programming for Computer Aided Design195
Marcja A., Toffalori C. — A Guide to Classical and Modern Model Theory299
Carrol B.W., Ostlie D.A. — An introduction to modern astrophysics805
Wawrzynczyk A. — Group representations and special functions15
D'Inverno R. — Introducing Einstein's Relatvity57
Hormander L. — The analysis of linear partial differential operators I143
Bertlmann R.A. — Anomalies in Quantum Field Theory31
Straumann N. — General relativity and relativistic astrophysics4
Price J.F. — Lie groups and compact groups2
Hatfield B. — Quantum field theory of point particles and strings541
Arwini K. — Information Geometry: Near Randomness and Near Independence20
Schlichenmaier M. — An Introduction to Riemann Surfaces, Algebraic Curves and Moduli Spaces1
Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142)523
Boothby W.M. — An Introduction to Differentiable Manifolds and Riemannian Geometry59
Feynman R.P. — What do you care what other people think?64
Carmeli M. — Classical Fields: General Gravity and Gauge Theory555
Graham J., Baldock R. — Image processing and analysis. A practical approach198, 212, 261, see also "Edinburgh Mouse atlas"
Dold A. — Lectures on Algebraic Topology251
Lee J.M. — Differential and physical geometry82
Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity19
Bergin T.J., Gibson R.G. — History of Programming Languages (Vol. 2)17—18, 22
Morita S. — Geometry of Differential Forms14
Ehlers J. (ed.) — Relativity theory and astrophysics. 1. Relativity and cosmology62
Rice J.R. — The approximation of functions. Nonlinear and multivariate theory171
Novikov S.P., Fomenko A.T. — Basic elements of differential geometry and topology128
Ehlers J. (ed.) — Relativity theory and astrophysics. Relativity and cosmology62
Hermann R. — Differential geometry and the calculus of variations24
Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I.111, 543
Israel W. (ed.) — Relativity, astrophysics and cosmology289
Marathe K.B., Martucci G. — The mathematical foundations of gauge theories2
Kobayashi S., Nomizu K. — Foundations of Differential Geometry, Volume 12
Serre J.-P. — Lie Algebras and Lie Groups76
Ìåòêàëô Ì. — Îïòèìèçàöèÿ â Ôîðòðàíå25
Porteous I.R. — Clifford Algebras and the Classical Groups215
Vasil'ev V. A., Sossinski A. — Introduction to Topology50
Krantz S.G. — Function theory of several complex variables493
Choquet-Bruhat Y. — General Relativity and the Einstein Equations1
Loomis L.H., Sternberg S. — Advanced calculus364
Tuynman G.M. — Supermanifolds and Supergroups: Basic Theory124
Lane S.M. — Mathematics, form and function239, 241
Frankel T. — The geometry of physics: an introduction15
Naber G.L. — Topology, Geometry and Gauge Fields1
Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis231
Israel W. (ed.) — Relativity, astrophysics and cosmology289
Pier J.-P. — Mathematical Analysis during the 20th Century289
Israel W. — Relativity, Astrophysics and Cosmology289
Fritzsche K., Grauert H. — From Holomorphic Functions To Complex Manifolds155
Greub W., Halperin S., Vanstone R. — Connections, curvature, and cohomology. Volume 115, 414
Ruelle D. — Elements of Differentiable Dynamics and Bifurcation Theory143—144
Frankel T. — The geometry of physics: An introduction15
Schutz B. — Geometrical Methods in Mathematical Physics25
Klingenberg W. — A Course in Differential Geometry (Graduate Texts in Mathematics)105, 124
Sagle A. A. — Introduction to Lie groups and Lie algebras43
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics111, 543
Azcarraga J., Izquierdo J. — Lie groups, Lie algebras, cohomology and some applications in physics2
Mac Lane S. — Mathematics: Form and Function239, 241
Thirring W., Harrell E.M. — Classical mathematical physics. Dynamical systems and field theory12
Markl M., Shnider S., Stasheff J. — Operads in Algebra, Topology and Physics311
Nash C., Sen S. — Topology and geometry for physicists26, 36—37
Miron R. — The Geometry of Higher-Order Lagrange Spaces: Applications to Mechanics and Physics (Fundamental Theories of Physics)47
Morita S. — Geometry of Differential Forms (Translations of Mathematical Monographs, Vol. 201)14
J. M. Borwein, Qi.Zhu — Techniques of Variational Analysis (CMS Books in Mathematics)291
blank
HR
@Mail.ru
© Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01!| Valid CSS! Î ïðîåêòå