| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà | 
| Kadison R.V., Ringrose J.R. — Fundamentals of the theory of operator algebras (vol. 1) Elementary Theory | 1 | 
| Lang S. — Algebra | 129, 150, 283 | 
| Pollard H., Diamond H.G. — The Theory of Algebraic Numbers | 59 | 
| Lipschutz Seymour — Schaum's Outline of Theory and Problems of Linear Algebra (Schaum's Outlines) | 43, 147—149 | 
| Brauer F., Nohel J.A. — The qualitative theory of ordinary differential equations | 41, 44, 64, 274 | 
| Hayek S.I. — Advanced mathematical methods in science and engineering | 3 | 
| Latrve D.R., Kreider D.L., Proctor T.G. — Hp-48G/Gx Investigations in Mathematics | 455 | 
| Conte S.D., de Boor C. — Elementary numerical analysis - an algorithmic approach | 140, 347, 417 | 
| Mathews J.H., Fink K.D. — Numerical Methods Using MATLAB | 557 | 
| Pommaret J.F. — Differential Galois Theory | 1B 4.4 | 
| Myers J.L., Well A.D. — Research design and statistical analysis | 616 | 
| Cameron P.J. — Combinatorics : Topics, Techniques, Algorithms | 203 | 
| Messer R. — Linear Algebra: Gateway to Mathematics | 104, 129 | 
| Bergman S. — The Kernel Function and Conformal Mapping | 1 | 
| Rudin W. — Real and Complex Analysis | 81 | 
| Weinstock R. — Calculus of variations with applications to physics & engineering | 9 | 
| Harmuth H.F. — Sequency theory: foundations and applications | 18 | 
| Bateman P.T., Diamond H.G. — Analytic Number Theory: An Introductory Course | 265 | 
| Levine I.N. — Molecular Spectroscopy | 16 | 
| Akhiezer N.I., Glazman I.M. — Theory of Linear Operators in Hilbert Space | 97 | 
| Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications | 9 | 
| Lorentzen L., Waadeland — Continued fractions and applications | 196 | 
| Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry | 295—296 | 
| Lawler E.L. — Combinatorial Optimization: Networks and Matroids | 41 | 
| Eilenberg S., Steenrod N. — Foundations of Algebraic Topology | 52, 72, 133 | 
| Kohonen T. — Self-organizing maps | 5 | 
| Ellis G. — Rings and Fields | 5 | 
| Hirschfield J.W. — Projective Geometries over Finite Fields | 29 | 
| Wicker S.B., Kim S. — Fundamentals of Codes, Graphs, and Iterative Decoding | 24 | 
| Shankar R. — Basic Training In Mathematics | 233 | 
| Bronson R. — Schaum's Outline of Matrix Operations | 52, 53 | 
| Johnston R. — Numerical methods, a software approach | 121 | 
| Delves L.M. (ed.), Walsh J. (ed.) — Numerical Solution of Integral Equations | 56, 80, 85, 94, 135 | 
| Poeschel J. — Inverse Spectral Theory | 46 | 
| Buckingham R.A. — Numerical Methods | 298 | 
| Altmann S.L. — Band Theory of Solids: An Introduction from the Point of View of Symmetry | 31 (2—3.8) | 
| Rall D. — Computational Solution to Nonlinear Operator Equations | 8 | 
| Griffits D.J. — Introduction to quantum mechanics | 69, 77 | 
| Elberly D.H., Shoemake  K. — Game Physics | 595—601 | 
| Dickson L.E. — Linear Groups with an Exposition of Galois Field Theory | 10, 52 | 
| Hale J.K., Kocak H. — Dynamics and Bifurcations | 219 | 
| Rudin W. — Real and complex analysis | 82 | 
| Lay D.C. — Linear Algebra And Its Applications | 63, 211 | 
| Robinson D.J.S. — A Course in Linear Algebra with Applications | 122 | 
| Gallier J. — Geometric Methods and Applications: For Computer Science and Engineering | 7, 26 | 
| Greenberg M.D. — Advanced engineering mathematics | 444 | 
| Kushilevitz E., Nisan N. — Communication Complexity | 164 | 
| Halmos P.R. — Finite-Dimensional Vector Spaces | 7 | 
| Stakgold I. — Green's Functions and Boundary Value Problems | see "Algebraic independence"; "Dependence and independence" | 
| Kadison R.V., Ringrose J.R. — Fundamentals of the Theory of Operator Algebras (vol. 2) Advanced Theory | 1 | 
| Kolmogorov A.N., Fomin S.V. — Introductory real analysis | 121 | 
| Sanders J.A., Verhulst F. — Averaging methods in nonlinear dynamical systems | 19, 165 | 
| Tung W.K. — Group Theory in Physics: An Introduction to Symmetry Principles, Group Representations, and Special Functions | 296 | 
| Bamberg P.G., Sternberg Sh. — A Course in Mathematics for Students of Physics: Volume 1 | 7, 34, 53 | 
| Strang G. — Linear Algebra and Its Applications | 80, 82, 256 | 
| Guggenheimer H.W. — Differential Geometry | 175 | 
| Mattheij R.M.M., Molenaar J. — Ordinary Differential Equations in Theory and Practice (Classics in Applied Mathematics) (No. 43) | 82 | 
| Beachy J.A. — Abstract Algebra II | 52 | 
| Mix D.F., Olejniczak K.J. — Elements of Wavelets for Engineers and Scientists | 48ff | 
| Duda R.O., Hart P.E., Stork D.G. — Pattern Classification | 7 | 
| Wan Z.-X. — Geometry of matrices | 2 | 
| Farin G., Hansford D. — Practical Linear Algebra: A Geometry Toolbox | 266 | 
| Searle S.R. — Matrix algebra useful for statistics | 159 | 
| Asmar N.H. — Partial Differential Equations with fourier series and boundary value problems | A7, 326 | 
| Hamming R.W. — Numerical methods for scientists and engineers | 677 | 
| Barrels R.H., Beatty J.C. — An Introduction to Splines for use in Computer Graphics and Geometric Modeling | 79, 88, 112, 115, 154, 259, 263, 283, 365, 435 | 
| Aczel J., Dhombres J. — Functional equations in several variables with applications to mathematics, information theory and to the natural and social sciences | 14, 71, 72, 141, 228, 230, 232, 6 | 
| Avery J. — Creation and Annihilation Operators | 25, 76, 149 | 
| Stahl A. — Physics with tau leptons | 25, 76, 149 | 
| Rogosinski W. — Fourier Series | 8 | 
| Fuhrmann P.A. — A Polynomial Approach to Linear Algebra | 37 | 
| Bertsekas D.P. — Dynamic programming and optimal control (Vol. 1) | 331 | 
| Olver P.J., Shakiban C. — Applied linear. algebra | 174 | 
| Bamberg P.G., Sternberg S. — A Course in Mathematics for Students of Physics, Vol. 1 | 7, 34, 53 | 
| Kreyszig E. — Advanced engineering mathematics | 49, 74, 106, 108, 297, 325 | 
| Shankar R. — Principles of quantum mechanics | 4 | 
| Gilmore R. — Lie Groups, Lie Algebras and Some of Their Applications | 6, 157 | 
| Graybill F.A. — Matrices with Applications in Statistics | Sec. 2.4 | 
| Mac Lane S., Birkhoff G.D. — Algebra | 194, 202, 219, 552 | 
| McQuistan R.B. — Scalar and Vector Fields: a Physical Interpretation | 132 | 
| Behrens E.-A. — Ring Theory: Volume 44 in Pure and Applied Mathematics | 13 | 
| Hungerford T.W. — Algebra | 74, 181, 291 | 
| Marcus M., Minc H. — Survey of matrix theory and matrix inequalities | 29 | 
| Bazaraa M.S., Sherali H.D., Shetty C.M. — Nonlinear Programming: Theory and Algorithms | 751 | 
| Blanchard P., Devaney R.L. — Differential Equations | 249 | 
| Grenander U. — Toeplitz Forms and Their Applications | 13 | 
| Nicholson W.K. — Linear Algebra with Applications | 209 | 
| Harville D.A. — Matrix Algebra: Exercises and Solutions | 11, 12, 145 | 
| Goertzel G. — Some Mathematical Methods of Physics | 17 | 
| Wigner E.P. — Group Theory and Its Applicaion to the Quantum Mechanics of Atomic Spectra | 10, 35 | 
| Kreyszig E. — Introductory functional analysis with applications | 53 | 
| Harman T.L., Dabney J.B., Richert N.J. — Advanced Engineering Mathematicas with MATLAB | 81 | 
| Ince E.L. — Integration of ordinary differential equations | 80 | 
| Nehari Z. — Conformal mapping | 242 | 
| Bazaraa M.S., Jarvis J.J. — Linear Programming and Network Flows | 42 | 
| Birkhoff G., Mac Lane S. — A Survey of Modern Algebra | 176 | 
| Beard D.B. — Quantum Mechanics | 171 | 
| Atkins P. — Molecular Quantum Mechanics | 11 | 
| Hamming R.W. — Numerical Methods For Scientists And Engineers | 234 | 
| Elden L. — Numerical Linear Algebra and Applications in Data Mining | 17 | 
| Kemble E. C. — The fundamental principles of quantum mechanics | 117n | 
| Copeland A.H. — Geometry, algebra, and trigonometry by vector methods | 62, 110 | 
| Fox L., Parker I.B. — Chebyshev Polynomials in Numerical Analysis | 9, 10, 40 | 
| Stewart G.W. — Afternotes on Numerical Analysis | 77 | 
| Baker A. — A Concise Introduction to the Theory of Numbers | 57, 58 | 
| Stakgold I. — Green's functions and boundary value problems | see Algebraic independence; Dependence and independence | 
| Hewitt E., Stromberg K. — Real and abstract analysis: a modern treatment of the theory of functions of a real variable | 17 | 
| Hsiung C.-C. — A first course in differential geometry | 27 | 
| Lane S.M. — Mathematics, form and function | 186 | 
| Beard D.B. — Quantum Mechanics | 171 | 
| Atkins P.W., Friedman R.S. — Molecular Quantum Mechanics | 11 | 
| Mandl F. — Quantum mechanics | 4, 11 | 
| Kanwal R.P. — Linear Integral Equations: Theory and Techniques | 5 | 
| Braun M. — Differential Equations and Their Applications: An Introduction to Applied Mathematics | 134, 279 | 
| Fuzhen Zhang — Matrix theory: basic results and techniques | 2 | 
| Schutz B.F. — A first course in general relativity | 342 | 
| Herstein I.N. — Topics in algebra | 177 | 
| Zeidler E. — Oxford User's Guide to Mathematics | 639 | 
| Horn R.A. — Matrix Analysis | 3, 407 | 
| Schott J.R. — Matrix Analysis for Statistics | 38—40 | 
| Hodge W.V.D., Pedoe D. — Methods of Algebraic Geometry: Volume 1 | 43 | 
| Driver R.D. — Ordinary and delay differential equations | 101, 142 | 
| Hassani S. — Mathematical Methods: for Students of Physics and Related Fields | 174 | 
| Gullberg J. — Mathematics: from the birth of numbers | 1017 | 
| Lee A. — Mathematics Applied to Continuum Mechanics | 12, 550 | 
| Abhyankar S.S. — Lectures on Algebra Volume 1 | 8—9 | 
| Rice J. — Matrix computations and mathematical software | 6 | 
| Akenine-Möller T. — Real-Time Rendering | 718—719 | 
| Ivanov O.A. — Easy as Pi?: An Introduction to Higher Mathematics | 82, 121, 122 | 
| Shirley P., Ashikhmin M, Gleicher M. — Fundamentals of computer graphics | 24 | 
| Schutz B. — Geometrical Methods in Mathematical Physics | 14 | 
| Marcus M., Minc H. — Introduction to Linear Algebra | 5 | 
| Cheney W. — Analysis for Applied Mathematics | 4 | 
| Gill A. — Applied Algebra for the Computer Sciences | 329 | 
| Foster J., Nightingale J. — A Short Course in General Relativity (Longman mathematical texts) | 2 | 
| Mac Lane S. — Mathematics: Form and Function | 186 | 
| V. Bryant — Independence theory in combinatorics: An introductory account with applications to graphs and transversals (Chapman and Hall mathematics series) | 6 |